
AG86 984 MASSACHUSETTS INST OF TECH CAMBRIDGE LAS FOR COMPUTE--ETC FIG 9/0
TRANSMITTING ABSTRACT VALUES IN MESSAGES.(U)
MAY 80 M P HERLIHY N00014-T5C-0661

UNCLASSIFIED MIT/LCS/TR-234 NL

smmhhhhmhhhlo

EMEOMOEI,

' ///// m/II//I/II/I//

Iola' I Q:

1111111.251 1.6

PACROCOPY RESOLUT4 TEST CHART
NATIONAL AUI4ALI () SANDARDS 19f3 A

NA A S S A - I"'

COPUE SCEE i FF4N AG

NUTYT-0

7 0TANMTTN

ABTATVLE
INMSAE

Mauric PeterHerliD

IIi c~nh a up~ c)pm 1%11
1-m~dRw~rho h

-I cl 04-r ~ 'II(I1(T-d I\O
Oth'C-,"\Ilu dlwil'(

va"

SECURITY CLASSIFICATION OF THIS PAGE (Wt DeseD~.r _________________

READ INSTRUCTONS
REPORT POUMENTATIOt4 PAGE BEFORE COMPLETING FORK

Mt /ICS/TR-23 2. GOVY ACCESSION NO. S. R9CiPiENT'S CATALOG NUMBER

d _TITL S. TYPE OF REPORT a PERIOD COVERED

Transidtting Abstract values in messages. M.S.Thsi-Apri1 25, 1980
6. PERFORMING ORG. REPORT HUMSER

F MIT/IM/TlR-234
7. AUTHOR(11 CO TBAON GRANT NUMEER(.)

ric D;O0 A4-75-C0661
Maur-+=S74-21892

9. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERSMIT,'Laboratory for omiputer Sciece

545 Technology Square
Cambridge, M@i 02139

11. CONTROLLING OFFICE NAME AND ADDRESS INSFASWEC1THE Frog,~ 1. REPORT DATE

ARPA/Dept. of Defense Director/Office of May 1980
1400 Wilson Boulevard CcZEPfting Activities 13. NUMBER OF PAGES

Arlington, VA 22209 Washington, DC 20550 123
14. MONITORING AGENCY FNAME G ADDRESS(Uf different from Controlling Office) IS. SECURITY CLASS. (of tis report)

R/yDepartment of the Navy -Unclassified

Information Systemus Program (I- -
Ar.l2ngon, VA 22217 IS&. DCECLASSI FIC ATION/ DOWNGRADING

1S. DISTRIBUTION STATEMENT (of tis Report)

This document has been approved for public release and sale;
its distribution is unlimited

17. DISTRIBUTION STATEMENT (Of the abstract entered in block 20. it different from Report)

____ __ ____ ___JUL 1 8 1980

-. IS. SUPPLEMENTARY NOTES

Message Pasn

20. ABSTRACT (Continue an reverse side If necessary and Identify by block number)

This thesis develops primitives for a programming language intended for use ina
distributed computer system where individual nodes may have different hardware

* or software configurations. Our primitives are presented as extensions to the
CWU language. We assume that differences in hardware and in aMinistrative
policy require that individual nodes be free to choose their own local
representations for omnvc types, including user-defined types. Oumr main
Objective is to provide Primitives to oimunicate values of user-defined type.
Our primitives support a large degree of node aut=Wml, without rmtirim .j

I:DD ,Om, 1473 EDITION Of' I NO0V 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Vntered)

z''

S9GUFATY CLAMPSCA~TWO OF T"If P 6

20. that COcxiuicatinq nodes have prior kncwlledge of one another' s special
chlaracteistics. We argue that theP precise uling of value transmissioni
is type-dependent; thus the user, not the language, =.at ocxtrol the
RBanin Of tranalissicn for values of a typeW.

%WQIT CLASSIICAY)ON OP THUS PAOS(Mbm Daft~

Transmitting Abstract Values in Messages

Maurice Peter Ilerlihy

@ Massachusetts Institute of Technology 1980

This research was Supported in part by thieAdvanced Research Projects Age ncy of the
Department or Defense, monitored by the Office of' Naval Research Linder contract
N00014-75-C-0661, and in part by the National Science Foundation under grant
MCS 74-21892 A01.

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge Massachusetts 02139

-2-

Transmitting Abstract Values in Messages
by

Maurice Peter Herlihy

IAbstract
This thesis develops primitives for a programming language intended for use in a

distributed computer system where individual nodes may have different hardware or
software configurations. Our primitives are presented as extensions to the CLU
language. We assume that differences in hardware and in administrative policy require
that individual nodes be free to choose their own local representations for common
types, including user-defined types. Our main objective is to provide primitives to
communicate values of user-defined type. Our primitives support a large degree of
node autonomy, without requiring that communicating nodes have prior knowledge of
one another's special characteristics. We argue that the precise meaning of value
transmission is type-dependent: thus the user, not the language, must control the
meaning of transmission for values of a type.

i(

Thesis Supervisor: Barbara H. Liskov
Title: Associate Professor of Electrical Engineering and Computer Science

Keywords: Abstract Types, Distributed Systems, Message Passing, Modularity,I Object-Oriented Programming, Programming Languages, Programming

Methodology

I __..7L :z .

-3.

Acknowledgements

I owe special thanks to my advisor, Professor Barbara Liskov, for her editing,
suggestions, criticism, and insights. I would also like to thank the members of the
Distributed Systems Group, most especially Russell Atkinson, Toby Bloom, Paul
Johnson, Eliot Moss, Eugene Stark, Craig Schaffert, and Robert Scheifler, who have all
listened to me with great patience, and whose ideas and suggestions were
indispensable. Finally, I would like to thank Ellen Laviana for her encouragement and
support.

Submitted to the Department of Electrical Engineering and Computer Science on
April 25, 1980 in partial fulfillment of the requirements for the Degree of Master of
Science.

! ii

:&SC

$..,,I

.4.

CONTENTS

I. Introduction 6

1.1 Model of Computation .. 7
1.2 Model of Communication ... 8
1.3 Language Primitives ... 8
1.4 Multiple Representations ... 9
1.5 Sharing ... 10
1.6 Why Type-Independent Schemes Don't Work 11
1.7 Related Work ... 12
1.8 Outline of the Thesis ... 16

2. The Language Definition 17

2.1 Goals of the Language .. 17
2.2 Terminology .. 18
2.3 Communication Primitives .. 21
2.4 Transmitting Composite Types ... 22
2.5 Transmitting Abstract Types .. 23
2.6 An Example ... 26
2.7 Sharing .. 28
2.8 Two Examples ... 32
2.9 Transmitting Cyclic Structures .. 36

3. An Implementation Design 43

[3.1 Some Useful Data Abstractions 43
3.2 The Algorithm for Encoding Values ... 49
3.3 The Algorithm for Decoding Values ... 53
3.4 An Example ... 65

3. nExml............ l

-5-

4. Reflnements and Optimizations 75

4.1 Overview .. 75
4.2 Translating Between Abstract and Built-in Values 76
4.3 Constructing and Transmitting Messages ... 93

5. Conclusions ... 97

5.1 Summary and Evaluation .. 97
5.2 Transmitting Untyped Objects .. 100
5.3 Implications of Own Data .. 102
5.4 Operation Extension by Overloading ... 103
5.5 Operation Extension by Template .. 106
5.6 Applicability to Other Languages ... 115
5.7 Directions for Further Research .. 115

o ,"

2N" !

-6-

Introduction

Distributed computer systems have a greater potential for decentralized physical

and administrative control than do more traditional centralized systems. It is felt that

organizations consisting of co-operating, largely autonomous groups can best be served

by computer systems consisting of collections of co-operating, autonomous nodes,

where each node is controlled by a particular group [Reed 78, Svobod 79]. When we

say that nodes are autonomous, we mean that the group controlling a node has a

certain amount or freedom to choose its hardware configuration, and to run specialized

or proprietary software. Nodes may perform specialized tasks, such as printing, or

high-precision floating point arithmetic, and may benefit from specialized hardware

configurations. Nodes owned by groups interested in special applications may be

required to run private software. Rich groups may maintain expensive, sophisticated

machines, while groups with smaller budgets may be limited to simpler devices.

Conflicting with the need for diversity and specialization is a need for individual

nodes to co-operate and communicate. The existence of diversity in hardware,

software, and administrative policy threatens to complicate the task of designing and

verifying programs that involve the participation of several nodes.

A high-level programming language suitable for constructing distributed

programs should support the specification of node behavior in a clear, verifiable,

implementation-independent manner. Languages that support the use of data

abstraction, such as CLU [Liskov79], or Alphard [Wulf76] already present a

methodology for the construction of clean, modular interfaces between layers of a

centralized system. To support communication and co-operation in a heterogeneous

distributed system, it is desirable to impose interfaces with similar modularity qualities

ti A

-7-

between nodes.

This thesis develops communication primitives for a high-level language

intended for writing distributed programs in a heterogeneous system. Communication

among nodes is accomplished by message-passing, so that the behavior of a node can

be completely characterized by the messages it sends and receives. Our primitives are

structured to facilitate the design of distributed programs in terms of the

message-passing behavior of participating nodes, independently of how the nodes

implement that behavior.

We assume that communicating programs use the primitives developed in this

thesis. Messages contain values such as integers, booleans, or values of user-defined

type. We shall see that it is a relatively simple matter to communicate values of

language-defined type; a node may send the integer value I to another node, even if

the two nodes do not implement integers in the same way. In this thesis we address the

more difficult problem of developing a well-structured language mechanism to

communicate values of user-defined type.

1.1 Model of Computation

Following [Liskov 79a], the logical entities corresponding to individual

administrative groups are called guardians. The physical machines on which guardians

reside are called nodes. There is not necessarily a one-to-one correspondence between

guardians and nodes, although guardians are abstractions of individual computers. A

guardian has an address space containing objects and processes. A process is an

execution of a sequential program; objects are CLU objects.

• =

1.2 Model of Communication

With the exception of ports, to be discussed below, the address spaces of

guardians ate disjoint; guardians only communicate by message passing. Messages do

not contain objects, they contain the values of objects. The result of sending a message

containing an object's value is to create a new, distinct copy of that object at the

destination guardian, having the same value as the original.

1.3 Language Primitives

The programming language used in this thesis is CLU [Liskov 791, with new

primitives and data types to facilitate distributed programming. For simplicity, we

ignore CLU's own variable facility, although we mention some of the issues it raises in

the conclusion.

Port objects permit general routing and sorting of messages. Messages are

addressed to ports, not guardians. Ports accept and store messages of pre-determined

type, and they are the only objects that can be named across guardian boundaries.

The language includes send and receive primitives for communicating values of

objects between guardians. Both send and receive specify a port. The send statement

causes a message to be sent to the indicated port, and the receive statement causes a

message previously received at the indicated port to be interpreted. A port object is

created by a guardian, and only that guardian can process messages received by that

port
,!

it

F.,

- ---A ,.. -

-9-

1.4 Multiple Representations

The CLU language provides a number of built-in data types, and permits users to

define new types, which we call abstract types. Two kinds of information are useful for

describing an abstract type T. Specification information describes the behavior of T

objects in terms of a collection of primitive operations. Representation information

includes the data structures used to represent T objects, and the code for the

procedures implementing the primitive operations. Representation information is

encapsulated within a cluster. Clusters are information hiding devices; other programs

may use specification information about a type, but not representation information.

This restriction is enforced by limiting access to an object's underlying representation

to the primitive operations of the type.

Differept guardians in the distributed system may implement the samt abstract

type. We do not require that all the guardians implementing a given type use the same

representation. In fact, for many reasons it is desirable to allow different guardians to

use different representations for a common abstract type. The most compelling reason

is to realize the large degree of autonomy possible in a decentralized system. In a

system of physically and administratively independent guardians, individuals will

invariably be tempted to "customize" the implementations of common data types,

while retaining the need to communicate their values with other guardians. For

example, an individual may wish to install a privately developed hashing function in a

guardian's implementation of a symbol table type.

Different patterns of use may encourage specialized representations; for

example, a company's sales division may wish to support a more space-consuming

representation of a telephone book, which, in addition to listing telephone numbers

9'

- 10-

and addresses keyed by names, lists numbers and names keyed by addresses,

permitting more efficient canvassing of neighborhoods.

Hardware characteristics may also encourage specialized representations. A

guardian whose underlying hardware interpreter directly supports complex arithmetic

should treat complex numbers as a base-level type, and should not have to represent

complex numbers in the same way as a guardian residing at a less powerful node.

Similarly, guardians providing access to different kinds of photo-typesetting devices

may use different internal representations for character fonts, while guardians that use

those servers should use a single abstract font type, understood by all the servers,

*) regardless of the underlying hardware interpreter.

Security concerns may also prompt a guardian to keep secret its representation

for a type. The scheme developed in this thesis p)ermits individual guardians to conceal

the representation used to implement a type from other guardians implementing that

same type.

" 1.5 Sharing

CLU objects may name other objects. When two objects nane the same object,

we say the latter is shared. The behavior of an object may depend, not only on the

objects it contains, but also on sharing among them. The semantics of value

*% transmission for such a type should state whether this sharing structure is preserved.

Any scheme for transmitting values must address the problem of preserving (or not

preserving) the sharing structure of objects. "l'e scheme presented in this thesis takes

the approach that the degree to which sharing is preserved is part of each type's

definition. The language provides the implementors of a type with the tools necessary

.. ..- -S. . ..

to control the transmission of sharing structure.

1.6 Why Type-Independent Schemes Don't Work

A straightforward and general scheme for transmitting an object's value is simply

to transmit the value of the object's underlying representation in terms of values of

primitive type. Such a scheme clearly does not support multiple representations. Even

if it were acceptable to force every guardian to use the same representation for each

transmissible type, such a naive scheme would be completely unsuited for a language

based on the use of data abstraction, as we discuss in the next paragraphs.

The underlying representation of an object may be transmissible, while the

abstract value of that object may not be. For example, a file name may be represented

by a character string. The string may be transmissible, but the ile name may be

meaningless outside of a particular file system belonging to a particular guardian.

Conversely, there are a number of situations where an object's abstract value is

transmissible, but where the object's representation is unsuited as a vehicle for

communicating its value. Forinstance:

An object's representation may contain information meaningless
to another guardian, such as an index into a private table
maintained by the original guardian. A naive scheme could not
recognize (and compensate for) such context-dependent
information.

An object's representation could include objects whose values
are not themselves transmissible, (e.g. an I/O stream) but which
can be reconstructed by the recipienL

- 12-

What constitutes the "value" of an abstract object may not
always be clear from its representation. For example, each
object of a type might be marked with its time of creation.
When the value of such an object is transmitted, what creation
time should the new copy contain? Only the programmer can
make this decision.

A type's representation may contain redundant information that
may be more economically reconstructed than transmitted.

We conclude that transmissibility is a characteristic of an object's type, not of its

underlying representation.

1.7 Related Work

We begin by providing a rather summary description of our scheme to lay a basis

for comparison with previous work. We assume that the language implementations of

the various guardians are capable of communicating values of built-in type. To

communicate values of a user-defined type between guardians that may use different

representations for that type, values are encoded into a standard intermediate

representation, called the type's external representlation. At the language level, this

external representation takes the form of an object of different transmissible type. The

external representation type may itself be user-defined, or contain user-defined types.

When a value is sent in a message, a series of translation operations are invoked that

eventually reduce the user-defined value to values of built-in type, which can be

rv transmitted. Upon receipt, the inverse translations are applied to reconstruct the

original value.

t An alternative to standard intermediate representations is direct translation

between representations. [Fabry 76] develops a scheme for replacing modules while

the ambient system continues to run. During the transition from an old version to a

-. IX

- 13-

new version it is possible that different representations for objects of the same type

may co-exist. In Fabry's scheme, each object is tagged with a version number, and

each module version includes a translation operation from the representation used by

the previous version to its own representation. Whenever an object using an old

representation is encountered, a chain of translation operations is invoked to convert

the object into the current representation for that type.

It does not appear that direct translation can be applied to the problem of value

transmission in a heterogeneous distributed system. Fabry's version numbering

scheme assumes that each new version makes a single predecessor obsolete, and thus it

suffices to provide a single translation operation. In a heterogeneous system where

each guardian may use a different representation, there is no such natural ordering

among representations. When a new implementation of an existing type is introduced,

how many translation operations must be provided? Must all other guardians be

informed? How do guardians translate between hardware-dependent representations?

A number of schemes have emerged that permit transmission of built-in values

between heterogeneous nodes through the use of standard intermediate

representations [Levine 78,Crocker 75,Postel 74,White 74,Neigus 73,Telnet 73]. Our

scheme builds on the results of these works, since we assume that the underlying
language implementation can faithfully transmit such language-defined values as

strings, or arrays of integers, independently of their machine-level representations.

[Levine 78] examines and evaluates different strategies for- communicating values

such as real numbers, integers, or files of characters among heterogeneous nodes. It is

concluded that the use of standard intermediate representations best satisfies such

criteria as flexibility, extensibility, and efficiency.

-14-

A number of protocols have been developed for transmission of typed

information across the ARPANET.1 The Procedure Call Protocol developed for the

National Software Works [Crocker 75,Postel 74,White 741 is the most ambitious, being

capable of transmitting such values as character strings, integers, and lists. The

TELNET protocol [Telnet 731 is used for transferring character information, and the

File Transfer Protocol [Neigus 73] is used to transfer files. In these protocols, the

sender converts the information to be sent into a standard representation which is

either statically determined, or agreed upon by negotiation. Upon receipt, the receiver

converts the standard representation into whatever local representation it uses.

[Haber 781 discusses methods for dynamic replacement of modules managing

collections of long-lived objects. Each module version includes operations to translate

between its own representation and a "simple canonical" representation. When a new

module encounters an object in the old representation, the old module version is called

upon to translate the object into its canonical representation, and the new version

translates the canonical representation into the current representation. It is remarked

that canonical representations may be used to communicate values among

heterogeneous nodes in a distributed system.

Our scheme differs from that described in [Haber 781 in that we explicitly state

what constitutes a permissible external (canonical) representation. As we shall explain

in detail in the next chapter, many of the modularity properties of our scheme are a

direct result of the particular way external representations are defined.

1. By "typed" information, we mean as other than uninterpreted bit strings.

- 15 -

The PLITS language [Feldman 791 defines a number of language primitives for

writing distributed programs. PLITS modules communicate by message-passing.

Messages consist of individual values of unstnctured primitive type.1 The

mechanisms used to communicate these values between heterogeneous nodes are not

described. Users of the language who wish to transmit more complicated values such

as arrays, or values of user-defined type, are left to their own devices.

When defining value transmission for a type, one must decide what constitutes

the "boundary" of an object, and what effect transmission is to have on an object's

sharing structure. A related problem, that of defining copying operations for objects in

a distributed system is addressed in [Sollins 791. The model of communication used in

this thesis is similar to the copy-full-local operation described there. Our approach

differs in that our primary interest is not in developing sophisticated copying

operations: rather it is in developing language constructs to permit users to define

transmissible abstract types in ways that do not compromise guardian autonomy.

[Gligor79] discusses techniques for storing values of objects on secondary

storage, using encryption to avoid compromising the security of the information. Their

encryption scheme is largely independent of the message construction scheme

developed in this thesis; it could be used to provide security and authentication to the

language primitives developed here.

Both the choice of language primitives and the guardian model of computation

used in this thesis have been taken from work done by the M.I.T. Distributed Systems

1. Integers, booleans, characters, and reals are suggested.

'I,,
• ' "I." g .. . -

- 16-

Project [Svobod 79, Liskov 79a].

1.8 Outline of the Thesis

The plan of this thesis is to present the value communication scheme at

successively descending levels of abstraction. At the highest level, Chapter Two

defines the communication primitives as extensions to CLU, and describes how the

language user may define and implement transmissible abstract types.

Chapter Three outlines an implementation scheme for a run-time system

supporting the language extension defined in Chapter Two. The mechanisms for

constructing messages from objects and reconstructing objects from messages are

spelled out in detail. To present the scheme as simply as possible, we postpone

discussion of a number of efficiency-related issues.

Chapter Four addresses the issue of efficiency, describing optimizations to the

implementation described in Chapter Three.

Chapter Five discusses the conclusions reached in the thesis, including the

applicability of the methods developed here to other problem areas. Among these

areas are: the storage of values on secondary memory, displaying values of abstract

objects on terminals, and copying objects.
b

- .- ..

, . * ~; '
-1 - - -

- 17 -

The Language DennitiM

This chapter describes a number of programming language primitives to support

the communication of values among heterogeneous nodes in a distributed system.

These primitives are presented as an extension to the CLU language. The extended

language defines the meaning of transmission for built-in types, as well as providing

the means to define and implement transmission for user-defined types. Some

probk:ms that arise when defining transmission for cyclic user-defined types are also

addressed.

Rather than attempting to give a formal semantics for value transmission, this

thesis presents informal definitions of the primitives introduced. A formal semantics

for the extended language is a major undertaking in its own right, and lies beyond the

scope of this thesis.

2.1 Goals of the Language

Before presenting the language design, we list a number of criteria that we feel

any message-passing scheme should satisfy.

-i - The scheme should support multiple implementations of a
single type without a combinatorial growth of complexity. In
particular, the addition of new implementations of existing types

must not require changes to existing implementations.

'I. The meaning of transmission for any given type should be
determined by localized, single-level operations within the
module implementing the type. Verification of these operations
should suffice to verify the correctness of the module's
implementation of value transmission.

.I

- 18 -

Message construction, transmission, and interpretation should
be performed by the language implementation, not the user.
The user should be able to indicate the objects whose values are
to be transmitted, and the language implementation should do
the rest.

Any useful scheme must give the programmer a reasonably
simple means to control the effect of transmission on sharing
structure.

Any useful scheme must be efficiently implementable.
(However, we postpone discussing the efficiency of our scheme
until a later chapter, after examining some possible
implementations.)

2.2 Terminology

In subsequent discussions we adopt the following typographical conventions.

Objects are denoted by letters in cursive script (A, B, C). Names of operations on

objects are written in italics. We use CLU's dollar-sign notation to indicate the type

associated with an operation, where applicable. For example, T$similar and T$equal

are operations defined on T objects.

As in CLU, the basic containers for information are objects. The behavior of an

object is determined by its type. Each type has an associated collection of operations to

manipulate its objects. Objects have both an identity and a value. An object's identity

determines which object it is, while its value is its information content. Objects of

mutable type may change their associated values, while objects of immutable type may

not. The identity of an object cannot change. Objects may refer to other objects.

When an object refers to another, we sometimes say the former contains the latter.

When two objects refer to the same object we say that the latter is shared. For a more

complete description of CLU's model of computation, the reader is referred to the

- 19 -

CLU Reference Manual [Liskov 791.

We partition the types in CLU into three disjoint sets: primitive, abstract, and

composite. Primitive types are unstructured, language-defined types such as string,

char, int, real, and bool. Abstract types are user-defined types. Composite types are

composed from language-defined type constructors, of which CLU has six: array,

oneor, record, sequence, struct, and variant. Component types of a composite type may

be either primitive, abstract, or composite. Record's, array's, and variant's are mutable;

the other composite types are immutable. Objects of composite type serve primarily to

refer to collections of other objects. Primitive and composite types are sometimes

referred to as built-in types. Primitive types and type constructors are required to be

supported at every node, while an abstract type need only be supported at certain

nodes.

A cluster encapsulates the implementation of an abstract type T by defining a

concrete representation for T objects, and by defining T operations in terms of

operations on T's concrete representation. The choice of concrete representation

defines an abstraction function from values of the concrete representation type to

values of the abstract type, denoted by T$absiract. There is no Tlabstract operation

available to users of the language.

In our discussion of transmission, it is useful to define precisely when we

consider two objects to be identical, that is, when they have the same identity. The first

requirement we make of any such definition is that only objects of the same type can

be identical. Accordingly, we define T$identical to be an operation taking two T

t objects, returning true if and only if the arguments have the same identity. Note that

identical is used only for explanatory purposes; there is no corresponding language

*4 .

Vt-- -

-20-

operation currently defined in CLU. Tidentical is defined in the following way:

If T is primitive, then T$identical is equivalent to Tsequal, where
the latter is defined by the CLU Reference Manual.

If T is composite, then two objects are identical if they are the
results of the same invocation of the T$creaie operation.

If T is abstract, then two objects are identical if their concrete

representations are identical.

The identical operation is not quite the same as the CLU equal operation. For the

primitive types, and for the mutable composite types, identical and equal are indeed

equivalent. When defining an abstract type T, the CLU Reference Manual suggests

that proper usage of the T$equal operation requires that:

the equal operation should be an equivalence relation satisfying
the substitution property; i.e. if two objects are equal, than one
can be substituted for the other without any detectable
difference in behavior.[p.801

For types having well-defined equal operations, it follows that if two objects are

identical, then they are necessarily equal, although the converse may not be true.

Perhaps the most important distinction between identical and equal is that

identical is defined for every type, and is never defined in terms of user-defined

operations. If defined at all, the equal operations of abstract types are defined in terms

C . of user-defined operations.1 The identical opcrations for all types are defined by the

, " language, independently of any user-defined operations.

1. The equal operations of immutable composite types may also invoke equal
operations of user-defined component types.

' '

-21-

In our subsequent examples, we use "A a B" as an abbreviation for

"T$identical(A, B)", and "A = 0" as an abbreviation for "T$equal(A, B)".

2.3 Communication Primitives

We restrict discussion to messages consisting of the value of a single object

(which may, of course, contain other objects). In Chapter Five we will discuss some

more general kinds of messages, but we will see that they introduce no new difficulties.

Objects of type port are used to identify the recipient of a message. Ports are

parameterized according to the type of value they receive, e.g., a port of type port[int]

can only receive the values of integers. The names of ports may be sent in messages;

however, only the node that created a port may receive messages sent to that port.

Users may cause the value of an object to be sent to a port by executing a send

statement, indicating the object whose value is to be sent, and the port to which it is to

be sent. A message may be received by executing a receive statement, specifying the

port from which a message is to be taken, the variable to which the resulting object is to

be assigned, and the amount of time the user is willing to wait for the message to arrive.

The language implementation provides buffering of messages between the time they

are sent and the time they arrive.

At the most summary level of description, the result of sending the value of a T

object is to create a new T object, whose value bears some relation to that of the

original. The meaning of transmission for T can thus be characterized by a Iransmit

operation, mapping T objects to T objects.

For a primitive type P, P$ransmit creates a new P object having the same value

- F

-22-

as the original. For example: "abc" = string$iransmit("abc"), 1 - int$iransmiI(1), etc.

We note that like T$ideniical and T$absiraci, no explicit TMtransrnit operation is

directly available to users of the language. The T$iransnit operation is a device that

serves to explain the meaning of value transmission.

2.4 Transmitting Composite Types

The definitions given here concern only the values of objects; by discussing

transmission in terms of values, rather than object identities, we sidestep the problem

of defining the relation of sharing structure to value. This problem is addressed in a

later section.

Transmission for a value of composite type is defined in terms of component

transmission. For example, transmission for the array[T] type is defined informally as

follows: the result of transmitting an array[T] is to create a new array[T] object, having

the same bounds as the old array. Furthermore, the values of the new array's elements

* are the transmitted values of the old array's elements.

Transmission for the other composite types can be defincd similarly. Let A be an

object of composite type T. When the value of A is sent by a node, A's component

* objects are transmitted in some canonical order (e.g.: ascending order for array's,

lexicographical order for record's). When the T value is received, the values of the

components are received in canonical order, component objects are constructed, and a

new T object is created and initialized from the component objects.

I

-23-

2.5 Transmitting Abstract Types

The definition of a transmissible abstract type specifies the meaning of

transmission for that type by defining a transmit operation. Just as correct usageI)
demands that the copy operation for an abstract type preserve the value of the object

being copied, correct usage demands that the transmit operation for an abstract type

preserve the value of the transmitted object. In other words, the information content

of the received object should be the same, in some sense, as the information content of

the sent object. The problem of defining transmit for an abstract type T is thus the

problem of deciding which properties of T objects constitute their values, and what

constitutes preservation of those properties. An important area where such issues arise

is the question of the relation of value to sharing structure. Some of these issues are

discussed in the section on sharing.

2.5.1 implementing Transmissibility

We say that a type is transmissible if it has a transmit operation. For an abstract

type T, the transmit operation is defined in the following way. A transmissible type XT

is chosen, called the external representation type of T, along with a mapping from

values of T to values of XT. This mapping is denoted by T$encode, and the inverse

mapping by T$decode. The value of the object created by T$transnit is defined by the

composition of T$encode, XT$transmit, and T$decode:

T$transtni(A) - T$decode(XT$transmit(T$encode(A))).

The external representation of an abstract type T is specified by the definition of T;

thus all clusters implementing T use the same external representation. The external

representation type may be abstract, or composed from abstract types, but it must be

- 24-

transmissible.

The meaning of transmission for T values is defined only in terms of the

correspondence of T values to XT values (encode and decode), and in the meaning of

transmission for XT values (XT$iranstnit). This definition is independent of any

cluster's choice of concrete representation.

Each cluster implementing a transmissible type T must supply operations to

implement the encode and decode mappings. The T$encode operation takes a T object,

and returns an object of the corresponding external representation type, having the

Jcorresponding value. The T$decode operation performs the inverse mapping from an

object of the external representation type to the corresponding abstract object. The

encode and decode operations of a type are invoked automatically by the language

implementati.-m when a send or receive statement is executed.

A value of abstract type T is transmitted by the language implementation in 1he

following way (Figure 1): When a node sends the value of a T object, Tlencode is

applied to the object, and the value of the resulting external representation object is

sent (possibly by invoking further encode's). When the target node receives the

message, an external representation object is constructed from it, and T$decode is

applied to it to produce an object of type T.

The encode and decode operations of a cluster encapsulate the translations

between the concrete and external representations. These operations are completely

defined within the cluster, contributing to modularity. To verify that a cluster correctly

implements value transmission, it suffices to verify the cluster's encode and decode

operations. The external representation also allows new T clusters to be written

L . 1 AL

-25-

Fig. I. Definition of T$tIransmit

- - - - -- + -

I Guardian I I Guardian I

SI------ --------------------------

without affecting existing ones, since all T clusters communicate by converting local

concrete representations for T values to XT values in a standard way as the values cross

node boundaries.

Let T be a transmissible type supported at two guardians. Let CTI and CT2 be

the concrete representation types used by each, and XT the external representation

type. As usual, let T$encode and T$decode denote the mappings between values of T

and values of XT. Let T$absiracil and T$absirac2 denote the mappings between

values of CTI and CT2 and values of T. The functionality of these mappings are

illustrated in Figure 2.

The user of the T type needs to know the meaning of T$iransmii. but he does not

need to know the nature of" Ts external representation. The external representation of

a type T is only of interest to the implementors of new T clusters. The meaning of

transmission for primitive types and abstract types can be specified in the same way,

without reference to whether values are transmitted directly or reduced to simpler

transmissible values.

.- p .,

-26-

Fig. 2. The Relations of Encoding Operations

------------------ ------------------

I Guardian I J GuardianII II
+---+ TSencode +-----+ XTStransmit I +--..+ TSdecode +---+

I T I -------- >I XT I -------------- >I XT I ------- > T I
+---++ .. .+ .. +-----+

II / I\ -Il
I / I\III

TSabstractl I \ TSabstractWII / \ III
II / I III
I / I\III
...... + I + - - -....

II CT1 I I CT2 I
J +-+ I I +-

------------------ ------------------

2.6 An Example

To serve as an example of a typical abstract type, we introduce a single-key table

which stores pairs of objects, where one object (the key), is used to retrieve the other

(the item). The single-key table type has operations for creating empty tables, inserting

pairs, fetching the item paired with a given key, deleting pairs, and iterating through all

key-item pairs.

To present the example, we define some simple syntactic constructs. As in CLU,

the concrete representation for a type is declared within its cluster by use of the

distinguished equate:

rep = type.spec

where "type.spec" stands for a type specification. In addition, the external

representation for a type is declared by a similar distinguished equate:

5
i.., L

- 27 -

xrep = type-spec

The interface specifications for the encode and decode operations of a transmissible

type T are:

encode: proctype (T) returns (xrep) signals(not-possible(string))

decode: proctype (xrep) returns (T) signals(notpossible(string))

where xrep is the external representation type of T.

When writing a cluster parameterized by a type T we use the syntax:

where T in transmissible-types

to indicate that we require value transmission to be defined fur the parameter type.

Transmission is defined for the primitive types, and for abstract types having encode

and decode operations. Transmission is also defined for composite types whose

component types are transmissible.

Let us examine how a single-key table might be made transmissible. This type is

of general utility, yet it admits many specialized concrete representations: a guardian

that rarely deletes bindings might choose a representation that permits quick insertion

and lookup operations, at the expense of the delete operation, while another guardian

might use a proprietary hashing function, or a complicated lisL structure representation.

The most obvious candidate for this type's external representation is an array of

key-item pairs. The encode operation for the single-key table creates an empty array of

key-item pairs, extracts each pair from the table, and inserts it in the array. The decode

operation creates an empty table, extracts each pair from the external representation

object, and inserts it in the table. A sample implementation is shown in Figure 3.

-Ai

-28-

Fig. 3. Ihe Single-Key Table Type

table = cluster [key-type, item-type: type] is
create, % Create a new, empty table
bind, % Add a new key-item pair
lookup, % Given a key, return the associated item
delete, % Remove a key-item pair
elements % iterate through all key-item pairs

where key-type, item-type in transmissible-types

tab = table[key-type, item-type]
pair = struct [key: key-type, item: itemtype]
rep = ... % complicated structure
xrep = array[pair]

% Code for other operations ...

encode = proc(t: tab) returns (xrep)
ans: xrep := xrepSnew()
for k: key-type, it: item-type in tab$elements (t) do

xrepSaddh(ans, pairS(key: k, item: it))
end % for

return (ans)
end encode

decode = proc (x: xrep) returns (tab)
t: tab := tabScreate()
for p: pair in xreplelements(x) do

tab$bind (t. p.key, p.item)
end % for

return (t)
end decode

end table

2.7 Sharing

SCLU objects may refer to other CLU objects. When an object is referred to more

than once, we say that object is shared. Since mutable objects can be shared, the

behavior of an object may depend not only on the values of its components, but on the

-29-

way those components are shared. Consider an anay of objects of some mutable type

T. If two elements of the array share a single T object, then a change to that object

through one element will be observable as a change to the other. Alternatively, if the

two elements contain distinct T objects, then a change to one element will not affect the

other. Since the behavior of the two arrays is different, one can plausibly argue that

they have different values, and that transmission should distinguish between them.

Although it may be useful to have the Iransmit operation for a type preserve

sharing when transmitting a single value, it does not appear useful to preserve sharing

between objects sent in distinct messages. To capture this aspect of transmission, we

redefine the transmit operations to take a second argument: a message context that

defines the scope of sharing preservation by identifying the message being transmitted.

A message context can be viewed as uniquely identifying a particular execution of a

send statement.

Let M.4 be a message context, and let A and B be T objects. We further redefine

the transmit operations to satisfy the following property.

TI: A -B T$iransmi(A, M) T$transmi(B, M)

In other words, transmit preserves identity; if the value of an object is transmitted twice

in the course of executing a single send statement, a single object is created at the

receiving guardian.

Using the new definition of transmit, we will now specify the effect of value

transmission on the sharing structure of objccts of composite type, by informally

stating a number of properties of array[TJ$iransmit. The notation used to present these

properties is used for brevity. In the following statements, A and B denote any arrayT]

, I " .0

-30-

objects, and M denotes any message context. The first two properties state that the

resulting array has the same bounds as the original.

Al: array[11$low(array[TI$,ransmi(A, M)) = array[TI$low(A)

A2: array[1]$size(array[T]$,ransmi(A, M)) = array[T]$size(A)

The third property states that the value of each component of the new array is the

transmitted value of the corresponding component of the old array. Moreover, sharing

of components is preserved.

A3: (v k) (k is a legal index of A) =*T$ransinii(A[k], M) =- array[T]$iransmi(A,
MXkI

The transmit operations for the other composite types are defined similarly.

The language primitives developed in this thesis use the notion of object identity

as the basis for defining the effect of the transmit operations on sharing structure.

Object identity was by no means the only possible choice. One alternative, similar to

that taken by the CLU copy operation for composite types, is to ignore sharing

completely. The effect of applying the copy operation to an array[lT], A, (where T is a

mutable type) is to create a new, disjoint arrayT], A'. Corresponding elements of A

and A' have the same value, but any sharing among elements of A is not reflected by

sharing among elements of A'.

A user wishing to preserve sharing in such a scheme must explicitly encode

sharing information when the value is sent, and reconstruct it upon receipt For

example, to transmit an array[TJ, A, preserving sharing among the elements, one might

create an arraylT, B, referring to each T object in A only once, and an arraylint, C,

L -
-C--..-

-31-

having the property that for every legal index k, B[C[k]] = A[k]. Sharing structure is

explicitly encoded in the integer elements of C.

We reject this approach because we feel that sharing structure is part of an

object's value, and so should be preserved by transmission. Moreover, although it is

the responsibility of the language user to define and implement the effect of

transmission on the sharing structure of an abstract type, the language definition

should make the most common and usefil definitions easy to implement. Just as for

composite types, the sharing structure of an abstract type is part of its value. It is our

opinion that a well-structured definition of value transmission for an abstract type

should have properties analogous to A3: i.e., it will preserve its own internal sharing

structure.

Another approach is to use equal, rather t1.an identical, as the basis for preserving

sharing. This approach has the drawback that the equal operation for abstract types are

necessarily user-defined, while idenical is not. To implement value transmission so as

to preserve equal, each transmissible type would have to provide an equal operation, an

awkward requirement. Moreover, a language implementation that must frequently

invoke user-defined equal operations is likely to be much less efficient than one that

can perform an implementation-defined check for object identity. In a recent

implementation of this scheme by the author, testing for identity of composite objects

is done by a simple test for pointer equality.

The descriptions of the transmission algorithms given in this chapter suffice to

determine the order of application of Iransinil operations when a value is transmitted.

Invocations of encode and decode operations caused by the application of Iransmit

operations may be observable by the user, since encode and decode are user-defined,

- 32 -

and may have side-effects. Accordingly, we specify that for each object whose value is

transmitted in a given message context, encode is invoked at the sending guardian at

least once, and decode is invoked at the receiving guardian at least once. The language

definition places no restrictions on the order or number of those invocations.

2.8 Two Examples

We use the table type to illustrate the two kinds of sharing properties that are of

interest to the definer of a type's transnit operation. The first property concerns the

effect of transmission on internal sharing structures. Suppose a single item I is bound

to two keys K1 and K2 in a table T. Let the value of T be transmitted in a message

context M, and let T' _ table$transmi(T, M). For any reasonable definition of

table$transmit, T'. will contain keys K1' and K2' corresponding to K1 and K2 in T. By

the effect of transmission on internal sharing we mean that the definition of

table~transniit should specify whether K,' and K2' continue to share a single item, or

whether they are each bound to disjoint items.

The second important sharing property concerns the effect of transmission on

sharing relations between distinct objects whose values are sent in the same message.

By contrast to internal sharing, which concerns sharing relations within a single object,

we call the second sharing property external sharing. Let T1 and T2 be tables sharing a

single item 1. Suppose the values of T, and T2 are transmitted in a single message,

L where T1' table~transnit(T1, M), and T2" tablc$iransmil(T 2, A). By the effect of

transmission on external sharing we mean that the definition of table$transmit should

specify whether T1' and T2' continue to share a single item, or whether they contain

4 1 disjoint copies of l.

4 .'---

- 33 -

The only way we have provided for table$iransnii to preserve external sharing of

items is to have it invoke item$Iransmit on those items. Accordingly, we define the

effect of transmission on the internal and external sharing structures of the table type

in the following way. Let M be a message context, T a table, and K a key in the table.

TABI: table$lookup(table$iransnii(T, M), key$iranstnit(K, ad)) -

item$transmit(table$1ookup(T, K), Ad))

TABI guarantees two properties. First of all, it guarantees that sharing of items within

a given table is preserved. Secondly, it guarantees that sharing of items between

distinct tables is preserved when the tables' values are transmitted in a single message

context. Let M be a message context, and let T1 and T2 be (not necessarily distinct)

single-key tables. Suppose:

I- able$1ookup(T 1, KI) table$lookup(T 2, K2).

Let:

T I table$iransmiT 1, "

T29 table$iransmiK(T2,)

K'- key$transmi(K 1, A)

K2' key$,ransmi(K 2,A

By two applications of property TABI:

table$lookup(Tl', K') item$iransmi(I, M)

table$lookup(T2, K2') item$iransmiAI, Md).

By property TI, the right hand sides are identical, so sharing is preserved:

JirlAs&,

table$1ookup(Tf, K]') -table$1ookup(T 2" K 2.'

w An informal verification hat the single-key table implementation listed above

satisfies TAB] is quite straightforward. By inspecting the code of the encode operation,

we can see that if item I is bound to keys K1 and K2 in tables T, and T2 respectively,

then I is shared by two key-item pairs in the external representations, having keys K1

and K2. By a similar argument, decode also preserves sharing of items. To prove

TABI, it suffices to observe that xrep$transmii preserves sharing of items, an

observation that follows directly from the definition of transmil for the array types. If

transmission of the external representation did not preserve sharing of items, then the

encode and decode operations of the abstract type would have to be written to discover,

encode and reconstruct the sharing structure.

If (for some perverse reason) the definiion of the single-key table type had

specified that transmission should not preserve external sharing of items, that effect

could have been achieved by having the single-key table's external representation

contain distinct copies of the item.

To illustrate how the transmit operation of a new type can be composed from the

transmit operations of subsidiary types, let us examine the implementation and

verification of a two-key table. A two-key table differs from a single key table in that it

permits two types of keys to be used to retrieve items. A single item may be bound to

any number of keys of either type. Just as for single-key tables, we require that if a

single item is bound to several keys, then that sharing is preserved by transmission.

Since we already have a transmissible single-key table, let us choose, as an

: external representation for the two-key table, a struct consisting of two single-key

.. 41

-35.-

tables, each accepting one of the two types of keys.I
xrep = struct[tabl: tablel, tab2: table2]

We define the correspondence between values of the abstract type and values of the

external representation type in the most straightforward manner: for each key-item

pair in a two-key table, the appropriately typed single-key table component of the

external representation contains the same pair. This definition implies that if the same

item is paired with keys of different types in the two-key table, then that object will be

shared by both single-key tables in the external representation.

We can verify informally that this choice of external representation preserves

sharing of key-item pairs. From the definition of xrep$iransmiit, we know that the

value of each single-key table component is transmitted by its own Iransinil operation,

using the same message context. Property TABI ensures that sharing of items both

within a single-key table and between the two single-key tables is preserved. We

observe that without property A3 to preserve sharing, we could not have constructed

and verified the sharing properties of either table type as easily as we have.

To conclude the example, let us sketch an implementation for the two-key table.

We choose a concrete representation identical to the external representation, with the

same correspondence between concrete values and abstract values. The operations to

add, delete, change, and retrieve pairs can be implemented in a straightforward

manner. The encode and decode operations are particularly simple: they just return

their argument after performing an up or a down. The implementation is illustrated in

Figure 4.

-36-

Fig. 4. The Single-Key Table Type

two-key-table = cluster [kl-type, k2_type, item-type: type] is

tablel = table [kl-type, item-type]
table2'= table [k2.type, itemtype]
rep = record [tabi: tablel, tab2: table2]
xrep = rep

encode = proc (x: cvt) returns (xrep)
return(x)
end encode

decode = proc (y: xrep) returns (cvt)
return(y)

end decode

end two-key-table

2.9 Transmitting Cyclic Structures

When an object is created, CLU requires that it be given a value; there is no such

thing as an uninitialized object in CLU.1 This restriction adds to the safety of the

language, since every object that can be named has a legal value.

Let A be an object of abstract type, and let A' be its external representation. We

say that A' is self-referential if it refers to A. Values cannot be transmitted using

self-referential external representations, as may be illustrated by the following

example. Consider the ini-list cluster shown in Figure 5 which implements linked lists

of integers. The concrete representation is just a record with two components: the first

1. Although there may be uninitialized variables.

-.

-37-

Fig. 5. Linked List or Integers

int-list = cluster is ...

link = oneot [next: int-list, empty: null]
rep = record[car: int, cdr: link]
xrep = rep

encode = proc(x: cvt) returns(xrep)
return(x)
end encode

decode = proc(y: xrep) returns (cvt)
return(y)
end decode

end int-list

is an integer, and the second is either an int_list, or null. The external representation is

the same as the concrete representation. We encounter a problem when we try to

decode a message containing a circular list. To construct an int-list from a message, we

must first have constructed its external representation. To construct the external

representation object, we must first construct the objects it names. However, in the

case of a circular intjlist, the external representation contains the decoded intlist itself.

The requirement that an object have a well-defined value before it can be named

means that both the intilist and its external representation must be created before

being named by the other, and thus neither can be constructed. Note that if the list is

acyclic, then the external representation is not self-referential, and no such problem

results.

It might appear reasonable to state that an external representation is not

-38-

well-formed if it is self-referential. Unfortunately, such a restriction makes the

transmission of cyclic objects quite difficult. Consider the problem of making

potentially cyclic int-list's transmissible. Whatever external representation we choose

for the intjlist type cannot itself contain an intjlist component, since otherwise we

cannot guarantee that the external representation is not self-referential. A simple

strategy is to place the integer components in an array, along with some additional

information indicating the index in the array of the element to which the last element

was linked (with a special value for a null link). What the user is really doing here is

evading the CLU requirement that every named object have a value, by disguising an

object name as an array index.

We can take two approaches to the problem of transmitting cyclic structures.

One option is to leave the implementors of cyclic types to their own devices when

writing those types' decode operations. As a justification for this approach we might

observe that language Support for such transmission requires extending CLU's object

semantics to permit naming objects before they are constructed, complicating both the

language definition and its implementation.

The other option is to provide some explicit support for the transmission of cyclic

structures. We have seen that either course forces the user to name objects before they

have been given values. Without language support, the user must disguise the nature

of such references from the language, a clear case of having the language hinder, rather

than help the problem of program design. It seems unreasonable and inelegant to

require the programmer to take heroic measures both to encode values and to

circumvent the language definition.

Whether transmission of self-referential external representations is to be

0- p

II II I I , . . . "-l lli'lm -.... ... - -' -g :.

-39-

supported is primarily a question of programming convenience, in the same way that

implicit transmission of sharing information is a question of convenience. We have

seen that without the ability to use self-referential external representations the

$ transmission of cyclic structures becomes quite awkward. For this reason, we choose to

relax the requirement that an object have a value before it can be named. However

such references may only exist while a message is being decoded, and the

implementation of the decode operation must satisfy certain restrictions.

The restriction we impose on decode operations can be informally summarized as

follows: Let A be an object of abstract type T, and let A' be its external representation.

A' may contain A if T$decode applied to A' does not use the valueofA. In other words,

we allow A' to name A before A has been initialized, but we forbid T$decode to access

the value of A.

Let us make this notion more precise. Given a procedure P and an object A of

abstract type T, we seek to formulate a rule that ensures that P does not depend on the

value of A. We do not require that this rule be exact, but we do require that it be

conservative; whenever the rule is followed, we are safe, although we do not mind if

the rule is overly strict.

Clearly, any procedure that operates on A's concrete representation uses its value.

Moreover, the only procedures that can operate on A's concrete representation are the

operations of the T cluster. This suggests the following rule: A procedure P uses the

value of an object A of abstract type T if an invocation of P applies a primitive T

operation to A. This rule is safe, since without invoking an operation of the Tcluster, P

can only use the name of object A. The rule is conservative, since it is possible that an

operation of the T cluster might not access the concrete representation of A.

- 11

° 40-

If the decode ope--ation constructing A uses the value of B by invoking a cluster

I operation on it, then the construction of B must precede the construction of A. We say

that A depends on the value of B if B is in the transitive closure of the "uses the value

of" relation induced by applying decode to A. If A depends on B, then B must be

decoded before A. IF A depends on itself, then its construction must precede itself, an

obvious impossibility.

We may now make precise our restriction on de,ode operations that operate on

self-referential external representations. A decode operation is legal if the "uses the

value or' relation of the object being decoded is acyclic.

This restriction permits an object to be named by its own external representation,

facilitating the transmission of cyclic structures. The intjlist cluster as shown above

will now legally transmit cyclic lists, since correitly decoding an intjlist depends only

on the identity of the following intilist, not on whether it has been initialized, as no

operations are invoked on the successor.

We can display an illegal decode operation by choosing a different concrete

representation for the intjlist type (Figure 6). In this cluster's concrete representation,

*each element having a successor contains the value of the successor's integer, as well as

its own. The external representation is the same as the one used above. Each int-list

object depends on its successor, since decode invokes an intilist operation (car) on the

next intjlist. If the list is cyclic, an intjlist depends on itself, and the decode operation

fails the restriction. When implementing a new cluster for an existing transmissible

type, it is the responsibility of the cluster writer to choose a concrete representation

compatible with a legal decode operation.

I

-41-

Fig. 6. An Incorrect intilist Implementation

int...ist a cluster is car.

rep = record [car: int. cdr: link]

link = oneot [non-.empty: cdr..info, empty: null]

cdr..jnfo = record [next-lJist: int..list. next-..car: int]

xrep record [car: int. cdr: xlink]
xlink =oneof [non-..empty: int-list, empty: null]

car = proc(x: cvt) returns(int)
return(x .car)
end car

encode = proc(x: cvt) returns(xrep)
% Construct xrep's link
xl: xlink
tagcas. x.cdr

tag empty:
xl := xlinkSmake-.empty(nil)

tag non-empty(ti: cdr-info):
xl : = xl ink~make-non-empty(ti .next-liist)

end % tag
return(xropS(car: x.car, cdr: xl))
end encode

decode = proc(y: xrep) returns (cvt)
% Extract record components
1k: link
tagcase y.cdr

tag empty:
1k := link~make-empty(nil)

tag non...empty(list: int..Jist):
1k := link$make..non-.empty(

cdr...info(next-car: int...list~car(llst),
next-ljist: list))

end % tag
return(ropSfcar: y.car, cdr: 1k))
end decode

end int...list

Curiously, we can encode and send a self-referential external representation with

no apparent difficulty. The nature of this asymmetry between sending and receiving

AWL,.

-42-

can be illuminated by observing that on the sending side, a self-referential external

representation names the argument to a past invocation of encode, whereas at the

receiving side, such an external representation names the result of a fulure invocation

of decode.

i

"I

*i

-43 -

An Implementation Design

This chapter presents an implementation design for the value transmission

scheme described in the previous chapter. We describe run-time machinery to

construct messages from objects, and to reconstruct objects from messages. The

mechanisms introduced here are intended primarily as explanatory devices. As a

consequence, we have made no attempt to optimize run-time performance or to

minimize the number of constructs used. Although we feel that questions of efficiency

are extremely important, we also feel that the structure of the implementation can best

be conveyed by postponing a discussion of efficiency-related issues to the next chapter.

By presenting the complete implementation design in two stages, we hope to

distinguish findamental aspects of the implementation from details intended to

enhance performance.

Throughout this chapter, we refer to the construction of a message denoting a

value as encoding the value, and to the interpretation of a message denoting a value as

decoding the value.

3.1 Sonic Userul Data Abstractions

This section defines some data abstractions used to build the value encoding and

decoding mechanisms. Operation definitions follow the terminology of the CLU

Reference Manual: argl, arg2, etc. refer to the operation's arguments. The interfaces

of some of the data abstractions used differ slightly according to whether they are

being used to encode or decode values. Where appropriate, we prefix the names of

abstractions used to encode values with the letter "e", and those used to decode values

with the letter "d".

-44-

3.1.1 Message Streams

A message stream is an abstraction of the communication medium, encapsulating

specific characteristics of the medium that are irrelevant at the level of abstraction

addressed here, such as the protocols used, or when messages are really sent. There are

two kinds of message streams: encoding streams, which are used to send an object's

value to a foreign port, and decoding streams, which are used to receive a value

previously sent to a local port.

Information is transmitted in discrete units called tokens. When a value is sent,

an encoding stream is created, and the value is placed in the stream as a sequence of

tokens. A decoding message stream releases tokens in the same order they were placed

into the original encoding stream. The external representation mechanism ensures that

the sequence of tokens used to encode a value is independent of the concrete

representation used by a guardian.

Encoding message streams are implemented by the estream type:

open: proctype(port) returns(estream)

Creates an encoding stream used to send tokens to the indicated foreign
port.

insert: proctype(estream, token)

Inserts a token into an encoding stream.

current: proctype(estream) returns(stream-addr)

Returns the stream address of the next token. Stream addresses (see below)
are used to refer to tokens already in the stream.

close: proctype(estream)

-45-

Indicates that the user does not intend to use the stream for further output.

Decoding streams are implemented by the dstream type:

open: proctype(port, timeout) returns(dstream) stgnals(timeout)

Creates a decoding stream for reading tokens previously sent to the port
indicated by argi. If the message is delayed due to node failure or
communication failure, the timeout argurnent indicates how long the user
is willing to wait. If the indicated amount of time elapses without a
message, a timeout exception is signalled.

extract: proctype(dstream) returns(token) slgnals(timeout)

Removes and returns the next token from the stream. If the next token
does not become available for the amount of time specified in the timeout
argument to the open operation, a timeout exception is signalled and the
stream is disabled.

peek = proctype(dstream) returns(token)

Behaves just like extract, except that it does not remove the next token
from the stream. This operation will not be used until the next chapter.

current: proctype(dstream) returns(streamaddr)

Returns the stream address of the most recently extracted token.

close: proctype(dstream)

Indicates that the user does not intend to use the stream for further input.

3.1.2 Tokens

There are three kinds of tokens (Figure 7). Header tokens (Figure 8) mark the

start of a new value of composite or abstract type. They may contain type or size

information. Back reference tokens contain the stream address of a token previously

placed into the stream. Sharing is indicated by back reference tokens. Data tokens

j4
4 :...,

-46-

Fig. 7. Token Type Definition

token = oneof [data: data-token, % Primitive type
header: header-token, % Composite or abstract
back-ref: streamaddr] % Indicates sharing

Fig. 8. 1 leader Token Type Definition

header-token = oneof [
abstract-hdr: null, % abstract value
oneof-hdr: tnt, % tag value
varianthdr: Int, % tag value
array-hdr: record [low, size: int],
seq-hdr: int, % size
recordhdr: int, % number of selectors

struct-hdr: int % number of selectors

(Figure 9) represent values of primitive type such as integers, strings, booleans, etc. A

sireant address uniquely identifies a token in a given message stream.

Fig. 9. Definition of Data Token Type

data-token a oneof [
bool: bool,

char: char,
int: tnt9
null: null.
real: real.
string: string]

ft
,ft

-47 -

3.1.3 Maps

I We recall from the previous chapter that if the value of the same object is sent

twice in the same message, then a single corresponding object is constructed by the

receiver. Objects of type map are used to ensure that transmission preserves sharing. A

map contains corresponding pairs of objects and stream addresses. There are several

kinds of maps. When encoding values, the einap type is used to locate the stream

address of a given object's encoded value. When decoding values, the dinap type is

used to locate the object constructed from the value encoded at a given stream address.

The emap type has the following operations:

create: proctype() returns(emap)

Creates an empty encoding map.

enter: proctype[T: type](emap, stream-addr, T) signals(exists)

Enters arg2 as the stream address where the encoded value of arg3 starts. If
arg2 has already been entered, exists is signalled.

seen: proctype[T: type](emap, T) returns(bool)

If arg2 has been entered, the result is true, otherwise the result is false.

lookup: proctype[T: type](emap, T) returns(steam-addr)
signals(not-found)

If arg2 has been entered, the associated stream address is returned,
otherwise not-found is signalled.

The dmap type has the following operations:

create: proctype() returns(dmap)

Creates an empty decoding map.

enter: proctype[T: type](dmap. 1. streamaddr) signals(exists)

41'

-48-

Enters arg2 as the object decoded from the value at the stream address
denoted by arg3. If arg2 has already been entered, exists is signalled.

lookup: proctype[T: type](dmap, streamaddr) returns(T)
signals(not.found)

If arg2 has been entered, the associated object is returned, otherwise
not-found is signalled.

seen = proctype[T: type](dmap, streamaddr) returns(bool)

Returns true if an object of type T has been entered in the map with the
given stream address. This operation will not be used until the next
chapter.

Finally, we need a third kind of map that just remembers the identities of the

objects that have been entered. We call this type the initialization map, for reasons that

will be explained later. The initialization map is implemented by the imap type, and

has the following operations:

create: proctype() returns(imap)

Creates an empty initialization map.

enter: proctype[T: type](imap, T) signals(exists)

Enters arg2 in the map. If arg2 has already been entered, exisis is signalled.

elements: ltertype[T: type](imap) yields(T)

Yields and removes all previous entries of type T.

empty: proctype(imap) returns(bool)

Returns true if there are no objects of any type currently in the map.

is-inftialized: proctype[T: type](imap) returns(bool)

Returns false the first time it is invoked with the given parameter type, and

I;

"49-

true thereafter.

3.1.4 Contexts

Objects of type conlext serve to associate the message stream and the maps used

to encode or decode a single value. There are two kinds of contexts: encoding contexts

and decoding contexts. The context types are defined by the following equates:

econtext = record [emap: emap. estream: estream]
dcontext = record [dmap: dmap, imap: imap, dstream: dstream]

3.2 The Algorithm for Encoding Values

The language implementation encodes an object's value by recursively traversing

the object, rather like a LISP map finction. As the object is traversed, the

implementation creates tokens and places them in a message stream, using a map to

keep track of sharing information.

Executing a send statement on an object of type T is equivalent to invoking the

procedure shown in Figure 10. The send statement creates a new context for the

message, opening a message stream and creating an empty map. T$pui is then invoked

to place the value of the T object in the stream as a sequence of tokens. After T$put

returns, the stream is closed.

The language implementation provides every transmissible type with a put

operation. The pw operations are pail of the language implementation; their existence

is not visible to the user. The pui operation for the type T has the following calling

sequence:

ol

Fig. 10. Effects of (lie Send Statement

send = proc[T: type](x: T, p: port[T])

% Create a new encoding context.
em: emap := emap$create()
es: estream := estream$open(p)
cxt: econtext := econtext$(emap: em, estream: es)

% Encode the value.
TSput(x, cxt)

% Close the stream.

estream$close(es)

end send

put: proctype(T, econtext)

The put operations for abstract and composite types preserve sharing in the

foilowing way. When put is invoked, it checks whether the object being sent has

previously been entered in the map. If it has, then the associated stream address is

extracted. A token containing a back reference to that stream address is put into the

message stream, and T$pui returns. If the object has not been previously encountered,

it is entered in the map with its stream address. The put operation proceeds differently

depending on whether its type is composite or abstract.

For an abstract type T. a header token is placed in the stream, and the external

representation is created by applying T$encode to the T argument. XT$put is then

invoked with the new external representation object and the old context. The put

operation for an abstract T is illustrated in Figure 11.

For a composite type, a header token containing type-specific information is then

placed in the message stream, and the put operations of the componcnts are invoked.

Fig. 11. The Put Operation ror an Abstract Type T

j put = proc(x: T, cxt: econtext)

% Has this object been seen before?
It emap$seen[T](x. cxt.emap) then

% Find the str'eam address of the object.
back: stream..addr := emap$lookup[T](cxt.emap. x)

% Output a back reference to the object.
tok: token := token~make-back-ref(back)

estreaiu~insert(cxt .estream, tok)

else
% A new object, enter it in the map.
next: streamnaddr := estream$current(cxt.estream)

eiuap$enter[T](cxt.emap, x, next)

% Create and output a header token.
htok: header-token := header-token~make-abstract(nil)
tok: token :=token$niake-header..token(htok)
estream$insert(cxt .estream. tok)

% Create the external representation.
y: xrep := T$encode(x)
xr'ep$put(y, cxt)

end % if

end put

Figure 12 contains the text for arraym$put.

If T is primitive, the object's value is cncoded directly into a data token. Figure

13 contaiins the text for int$pul.

Al
...

-52-

Fig. 12. The Put Operation (or the ArrayITI Type

put = proc(x: array[T]. cxt: econtext)

% Has this array been seen before?
if emap$seen[array[T]](x, cxt.emap) then

%/ Find the stream address of the object.
back: stream..addr := emap$lookup[array[T]](cxt.emap, x)

% Output a back reference to the object.
tok: token := tokenSmake..back-ref(back)
estream$insert(cxt.estream, tok)

else
% A new object, enter it in the map.
next: stream-addr := estreani$current(cxt.estream)
eiap$enter[array[T]](cxt .emap, x, next)

% Create and output a header token.
htok: header-.token :

header-.token$make..array(
array-.hdr$(low: array[T]Slow(x).

size: array[T]$size(x)))
tok: token := token$make-header-token(htok)
estreani$insert(cxt.estream, tok)

% Output each element.
for elm: T in array[T]$elements(x) do

T$put(eli. cxt)
end % for

end % if

end put

Fig.13.ThePut Operaition for the hit Type

pt=proc(x: int. cxt: econtext)

do:data-token := data..token~make-.int(x)
to:token := token$Inake-data..Aoken(dtok)

estream~insert(cxt .estream, tok)

end put

-53-

3.3 The Algorithm ror Decoding Values

The language implementation decodes a value by removing tokens from the

message stream and building ip an object having the value represented. The

implementation remembers the identities of objects constructed, so that when a back

reference token is encountered, the system can identify the object indicated by the

back reference.

The scheme described supports the use of self-referential external

representations. To keep the explanation as simple as possible, we ignore the question

of efficiency, and present a simple scheme that, in most cases, is more powerful than is

strictly needed. In the next chapter we discuss ways of making this scheme more

efficient.

3.3.1 Self-Rererential External Representations

We recall that if A is an object, and A' its external representation, A' is

self-rcferential if it contains A. We stated in the previous chapter that to decode an

object having a self-referential external representation it is necessary to name the object

before it has been given a value. The implementation scheme adopted here permits an

object to be named before its value has been reconstructed by creating a preliminary

uninlialized version of the object. The identity of the uninitialized version is the

identity of the object being decoded, although its value is undefined.

We emphasize that uninitialized versions are part of the language

implementation, not part of the language. The user can never observe, or operate on,

an uninitialized object version. Uninitialized versions can exist only while a receive is

in progress.

(.

.-

-54-

3.3.2 Order or Initialization

Let A be an object of type T. When should an uninitialized version of A be used,

and when should the completed version be used? As explained in the previous

chapter, A cannot be initialized until the all the objects whose values are needed to

initialize A have been initialized. This requirement has different implications for

built-in types than for abstract types.

IfT is primitive, then A is constructed from a single token. If'" is composite, the

valie of A consists of the ident-ins of its components, not their values. Thus, the

initialization of an object of btilt-in type does not depend on tne other object having

been previously initialized.

If A is abstract, then A cannot be decoded until all the objects whose values are

used by r$dccode have been decoded. I f any object whose decode precedes A's refers

to A, it must refer to an uninitialized version. In particular, no lower-level decode

operation may invoke a T operation on an uninitialized version of A. Conversely, A

must be decoded before an object whose decode operation depends on A can be

decoded.

Reflecting the different degrees of dependency, values are decoded in two stages.

In the first stage, called the scup stage, the values of primitive and composite type

contained in the niessage are decoded. References to objects of abstract type are

constructed as references to ,ninitialized object versions. No user-defined decode

operations are invoked at this stage. In the second stage, called the inlialization stage,

all uninitialized object versions are initialized in a safe order.

Values of built-in type are decoded before values of abstract type because the

I--

- 55 --

former can be efficiently decoded entirely by the language implementation. In

particular, uninitialized versions of objects of composite type are protected from access

by decode operations, since user-written procedures are not invoked uteril the

initialization stage, by which time all objects of built-in type will have been initialized.

How do we prevent decode operations from operating on uninitialized versions of

abstract objects? The order in which abstract objects must be decoded depends on the

order in which their values are used by decode operations. Although this order might

be determined by examining the text of all the decode operations invoked in the course

ofa receive, such an examination seems impractical. We choose to determine a proper

order by initializing object versions only when an attempt is made to access the object's

value. Since the values of the objects are constructed only when they are needed, this

control structure is a kind of lazy evaluation [Friedman 76, Hender 76]. We call this

strategy lazy decoding. When an operation of abstract type T is invoked from a decode

operation, the language implementation checks each argument of type T to see whether

it has been initialized. If it has, the invocation proceeds. If it has not, the current

invocation is suspended, and the decode operation of the uninitialized object is invoked

to initialize it. As soon as all T arguments have been initialized, the suspended

invocation is resumed. This strategy guarantees that objects are decoded in an order

consistent with the dependency relations described above, since an object is always

decoded before its value is used, and no object is decoded prematurely.

Executing a receive statement is equivalent to invoking the procedure shown in

Figure 14. The receive statement creates a new decoding context, opening a message

stream and creating an empty map. T$gel is then invoked to implement the setup

stage, and T$initialize is invoked to implement the initialization stage. Finally, a

-56-

cleanup procedure is invoked to reclaim some unneeded storage.

3.3.3 Representation of Uninitialized Object Versions

We assume the language implementation uses object references of fixed size,

[Snyder 79], as do all current CLU implementations. Use of fixed-size references

means that it is possible to determine the storage required by an object from the

information in its header token. In this way, we can allocate storage for an object of

composite type before decoding that object. In this implementation, a reference to an

tiiiinitialized object version of composite type is a reference to the storage that will

eventually be used by the initialized version.

We construct the uninitialized version of an object of abstract type by

Fig. 14. Effects or (he Receive Statement

receive = proc[T: type](p: port[T], time: timeout)
returns(T) slgnals(timeout)

% The setup stage:
% Create an empty decoding map.
dm: dmap := dmap$create()
% Open a message stream.
ds: dstream := dstream$open(p, time)
% Create an empty initialization map.
im: imap := imap$create()

cxt: dcontext := dcontext$(dmap: dm, imap: im,
dstream: ds)

x: T := T$get(cxt) resignal timeout
dstream$close(ds)

% The initialization stage:
T$initial ize(cxt)
x := cleanup[T](x)
return(x)

end receive

VA0~m

-57-

constructing the object's external representation. The version is initialized by decoding

the external representation. Unlike composite types, the uninitialized and initialized

versions of an abstract object cannot use the same storage, since the latter is

constructed from the former by a user-defined operation, and the language

implementation has no way of knowing how large the result will be.

Since we cannot pre-allocate storage, every object of abstract type created during

a receive is referred to indirectly through a ufo (unfinished future object). The

representation of a ufo is shown in Figure 15. The meanings of the four states are as

follows: The ufo is in the empty state when it is created. The ufo represents an

uninitialized object version while it is in the uniifialized state, when it contains the

object's external representation. When the ufo enters the initialized state, the object it

represents has been initialized by decoding the external representation. The in progress

state exists to detect illegal decode operations. A uf) is in this state while the object it

represents is being constructed. If an attempt is made to access a ufo in this state, then

a cyclic dependency exists and failure is signalled.

In addition, three operations are provided to detect and manipulate uninitialized

object versions:

ufo.mask: proctype [T: type](ufo) returns(T)

Fig. 15. The Representation of a UFO

ufo = variant[empty: null, % just created
in-progress: null. % being initialized
uninitialized: any, % xrep of represented object
initialized: any X represented object
]

S- 58-

Creates an Uninitialized T object from the given ufo.

ufo-unmask: proctype [T: type](T) returns(ufo)
slgnals(not-a-ufo)

If argl is represented by a ufo, the underlying ufo is returned. Otherwise,
notaa-ifo is signalled.

ufo-test: proctype [T: type](T) returns(bool)

If argl is represented by a ufo, the result is true. Otherwise, it is false.

Lazy decoding is implemented in the following manner. Before the first line of

any T cluster operation is executed, the language implementation tests each argument

of type T to determine whether it is a ufo. If it is, an initialized version of the T object

it represents is extracted, possibly by decoding the object's external representation. We

call this test the careful prologue of an operation, and we assume it is automatically

performed by the language implementation. A careful prologue is shown in Figure 16.

When receiving a value of type T, The setup stage is implemented by a T$get

operation, which is provided to each transmissible type by the language

implementation. Like the put operation, get is part of the language implementation,

and is not visible to the user. The get operation for the type T has the following

interface specification:

get: proctype(dcontext) returns(T) slgnals(timeout)

* The get operation for an abstract type returns an uninifialized version of the object

heing decoded. The get operation for a composite type constructs the composite object

(however, components of abstract type will refer to Liinitialized versions). The get

operation for a primitive type constructs the primitive object.

L',

.59.

Fig. 16. The Careful Prologue of a T Cluster Operation

T cluster Is op.

rep=

irep.

op =proc(arg: T)

% Assign the initialized T object to variable "arg".

if ufo..test[T](arg) then
u: ufo :=ufo-unmask[T](arg) % convert to ufo
tagcase u

tag empty. in-progress:
signal falluro("illegal decode")

tag initialized(a: any):
arg :=force[T](a)

tag uninitialized(a: any):
y: xrep := force[xrep](a)
ufoSchange-in-progress(u. nil)
arg := T$decode(y)
uto~change-.initialized(u. arg)

end % tag
end % if

% Now execute the user-written code.

end op

end T

To construct a T object when T is primitive, the corresponding data token is

removed from the stream and used to allocate and initialize storage for the object.

Figure 17 contains the text for int$get.

The get operations for abstract and composite types preserve sharing in the

.60-

Fig. 17. The Get Operation for the Int Type

get = proc(cxt: dcontext)
returns(int)
signals(timeout)

% Create a token and output it.
tok: token :=dstream~extract(cxt.dstream)

resignal timeout
tagcase tok

tag data(dtok:. data-..tokeni):
tagcase dtok

tag int(ans: int): return(ans)
others: signal fallure("unexpected token type")
end % tagcase

ans: int :=data-token$value-int(dtok)
others: signal fallure("unexpected token type")f end % tagcase

return(ans)

end get

following way. When get is invoked, the next token iii the stream is extracted. If the

token is a back reference token, the object referred to is retrieved from thle map, and

gel returns. If the token is a header token, get proceeds differently depending on

whether the type is abstract or composite.

For at composite type, the header token is used to determine the amount of

storage required. '[he necessary storage is allocated, and a reference to the

uininitialized storage is entered in thle mnap to catch cyclic references by components.

An object created by at lower-level gel may refer back to A through the map, but no

attempt will be made to operate onl A, as no decode operationIs are invoked uintil after

the setup stage has initialized all of A's component references. The text for

arrayfl$gci is shown in Figure 18.

f -61-1

Fig. 18. The Get Operation for the Array[T] Type

get =proc(cxt: dcontext)
returns(arrsy[T])
signals(timeout)

array..hdr = record [low, size: int]

% Examine the first token.
tok: token := dstream$extract(cxt.dstream)

resignal timeout

tagcase tok
tag back-ref(addr: stream-addr):

% Object is old, look it up:I return(dmap~lookup[array[T]](cxt.dmap, addrj))tag header(hdr: header-token):
% Object is new, allocate storage:
ahdr: array-hdr := header-token$value-array-hdr(hdr)
ans: array[T] :=array[T]Spredict(ahdr.low. ahdr.size)

% Enter the object in the map.
addr: streantaddr := dstream~cui-rent(cxt.dstream)
dmap$enter[ar'ray[T]](cxt.dmap, addr, ans)

% Get the components.
for i: int In intfrom..to(1, ahdr.size) do

array[T]Saddh(ans. T~get(cxt))
resignal timeout

end
return(ans)

others: signal failure("unexpected token")
end % tag

end get

For an abstract type T, an empty ufo representing A is entered in the decoding

map, bound to the streamn address of A's header token. The uninitialized version of A

is entered in tile initialization map. XT$get is invoked, returning the external

representation (which may itself contain uninitialized object versions). The external

representation is placed in the ufo representing A, and the uninitialized version is

-62-

returned. T$gci is illustrated in Figure 19.

F~ig. 19. The Get Operation for ani Abstract Type

get = proc(cxt: dcontext)
returns(T)
slgnals(timeout)

% Examine the first token.
tok: token := dstreamlextract(cxt.dstream)

resignal timeout

tagceue tok
tag 'ack.ref(addr; stream..addr):

% Object is old. look it up:
return(dinap~lookup[T](cxt.dmap. addr))

tag header(hdr: header..token):
% Object is new. create uninitialized version
u: ufo ufo~make-empty(nil)
ans: T :=ufo..mask[T](u)

% Enter the object in the initialization map.
imap$enter[T](cxt. imap. ans)

% Enter the object in the decoding map.
addr: stream-addr := dstream~current(cxt.dstream)
dmap~enter[T](cxt.dmap. addr, ans)

% Construct the external representation.
y: xrep :=xrep$get(cxt) resignal timeout
ufo$change-uninitialized(u. y)
return(ans)

others: signal fallure("unexpected token")
end % tag

end get

-63-

3.3.4 The InitialiLation Stage

At the end of the setup stage, no objects of abstract type have been initialized,

but all objects of composite or primitive t)pe contained in the message have been fully

constructed. In the initialization stage, all tminitialized object versions previously

placed in the decoding context's initialization map are initialized.

The initialization stage can be viewed as an optimization, since it is not necessary

for correctness to initialize all objects. The lazy decoding scheme guarantees that the

valties of abstract objects %ill be aailable when needed. Nevertheless, since decode

operations may contain errors or cause side-effects, it is convenient to assure the user

that all decode invocations have completed when the receive statement completes.

Each transmissible type T is provided with an initialize operation. Like put and

get, initialize operations are provided by the language implenientation, and may not be

invoked by users. Initialize operations ha~e the following calling sequence:

Initialize: proctype(dcontext)

T$initialize iterates through tile uninitialized object versions of type T that had

previously been entered in the decoding context's initialization map, as well as

invoking the initialize operations of subsidiary types. The is-initialized operation of

the imap type prevents infinite recursion by detecting the second and subsequent

attempts to initialize objects of a given type.

Thie initialize operation for a composite type T simply invokes the initialize

operations of its subsidiary types. Ilic text for arra[Il']$initializc is sho\ n in Figure 20.

The initialize operation for an abstract type T iterates through the T objects

-64-

Fig. 20. The Initialize Operation for ArraylTI

initialize = proc(cxt: dcontext)

% Check that the invocation is new.
If imap$is-initialized[array[T]](cxt.imap)

then return end

% Initialize the subsidiary type.
T$initialize(cxt)

end initialize

entered in the initialization map, extracts the ufo's, and initializes them if they are

uninitialized. When a ufo representing a T object is initialized, T$dccode is invoked.

Lazy decoding may cause other object versions to be initialized. TWinfiialize is shown

in Figure 21.

The initialize operation for a primitive type returns immediately.

3.3.5 Cleaning Up

At the end of the initialization stage, initialized ufo's remain in the representation

of the object received. Since we assume (for now) that every abstract operation has a

careful prologue, it is not necessary for correctness to remove ufo's. Removing ufo's

does improve the performance of abstract operations, so it may make sense to remove

them at the end of the initialization stage. For this purpose, we use a cleanup

operation:

cleanup = proctype[T: type](T) returns(T)

Cleanup performs a mark-and-sweep traversal of the machine-level representation of

L

-65-

Fig. 21. The Initialize Operation for an Abstract Type T

initialize = proc(cxt: dcontext)

% Check that the invocation is new.

if imap~is-initialized[T](cxt.imap) then return end

% Initialize subsidiary types.

xrep$initialize(cxt)

%h Initialize subsidiary objects.

for x: T in imap$elements[T](cxt.imap) do
u: ufo :=unmask-ufo[T](x)
tagcase u

* tag initialized: % nothing to do

tag uninitialized(a: any):
% Extract external rep object.
y: xrep := force[xrep](a)
ufo~change-in-progress(u. nil)
x := 1$decode(y)

end % decde"

its aruet elcn eeecst nta zdufd's by direct references to the

contained objects.

3.4 An Examiple

To illustrate how these mechanisms work, we trace how the value of an object

conhsisting of two simple (and rather useless) mtuttally recuirsive types is transmitted.

An engine object has a serial number and an optional caboose. A caboose object has a

color and an associated engine.

-66-

The external representation of an engine is a record having as components a

serial number of type int, and a oneof which is either null or contains a caboose. The

cluster we examine here (Figure 22) uses the same concrete and external

representations.

The external representation of a caboose is a struct, having as components a

string denoting the color, and an engine. The concrete representation used by the

cluster we examine also contains its engine's serial number in a cache component

(Figure 23).

We observe that no operations of abstract type are invoked from the decode

Fig. 22. The Engine Cluster

engine = cluster is create, get-serial,

train = oneof[empty: null, car: caboose]

rep = record[rear: train, serial: int]
xrep =rep

get-serial = proc(x: cvt) returns(lnt)
return(x.serial)
end get-serial

encode = proc(x: cvt) returns(xrep)
return(x)
end encode

decode = proc(x: T) returns(cvt)
return(x)
end decode

end engine

-67-

Fig. 23. The Caboose Cluster

caboose = cluster is create.

rep = struct[color: string, front: engine, cache: int]
xrep = struct[color: string, front: engine]

encode = proc(x: cvt) returns(xrep)
return(xrep${color: x.color, front: x.front})
end encode

decode = proc(y: xrep) returns(cvt)
cache-val: int := engine$get-serial(y.front)
return(rep$(color: y.color,

front: y.front,
cache: cacheval))

and decode

and caboose

operation of the engine type. The caboose cluster's decode operation invokes an engine

operation; thus, the caboose decode operation uses the value of the associated engine.

From these observations, we conclude that the decode's listed above are legal, since the

transitive closure of the "uses the value or' relation is acyclic. When decoding a linked

engine and caboose, the engine must be decoded before the caboose, since its value is

used to initialize the caboose.

Let e be a variable bound to an engine, having serial number 9, and linked to a

red caboose. Let p be a port[engine]. We will trace the effects of executing

send e to p.

First, a new encoding context is initialized. Then a number of put operations are

I

-68-

invoked. For brevity, when naming operations of composite type we use names like

"recordSpui" when the particular record type is clear from context. Each invocation is

listed with its depth from the top of the calling stack.

Level 1: engine$put checks the map to determine whether the
engine has already been encoded. The engine has not been
entered in the map, so put enters it, and places a header token in
the stream at address 0. Enginc$encodc is invoked to (trivially)
construct the external representation, then record$pui is invoked
on the result.

Level 2: Since record$puf does not find its argument in the map,
a header token is output at stream address I to indicate that the
val of a record coniiining two selectors is starting. The record
object is entered il lie map, and the put operation of the first
component (in lexicographical order) is invoked.

Level 3: After unsuccessfilly checking the map, oneof$put
oL:tputs a header token at address 2 to indicate that the value of
a oneof with a tag value of I is starting. Put is invoked on the
caboose component.

Level 4: After unsuccessfully checking the map. caboose$put
outputs a header token at address 3. caboose$cncode constructs
the external representation, then structl$pul is invoked on the
result.

Level 5: After unsuccessfully checking the map, struct$put
outputs a struct header token with two selectors at stream
address 4, then proceeds to invoke put on its first component

Level 6: string$put outputs a token denoting the string value
"red" at stream address 5.

I.evel 5: strucl$put invokes put on its second (engine)
component.

................................

-69-

Level 6: engine$put finds the engine in the map, with associated
stream address 0. It outputs a back reference to stream address 0
at stream address 6, and returns. Each of the suspended put
operations at levels 5,4, and 3 also return.

Level 2: record$put resumes and invokes int$put on its second
(serial) component, which places a token denoting the integer
value 9 at stream address 7. All the suspended put operations
then return.

When the highest-level invocation of engine$put returns, the stream is closed, and the

send statement terminates.

To complete the example, we trace the efTects of executing:

receive e on p.

First a decoding context is initialized. In the setrp stage, the values of built-in type are

constructed.

Fig. 24. Tokens Produced by Sending Engine Value

Stream Address Token Type Token Information

0 header abstract value
1 header record with two selectors
2 header oneof with tag value 1
3 header abstract value
4 header struct with two selectors
5 data string value "red"
6 back reference stream address 0
7 data int value 9

'NO

-70-

Level 1: engine$gel extracts the first token, and determines that
it is a header token. An empty ufo is entered in the encoding
map, bound to stream address 0, and in the initialization map.
record$gel is invoked to construct the external representation.

Level 2: record$get extracts the next token, and determines that
it is a header token. Storage for a record having two selectors is
allocated. The uninitialized record is entered in the map, bound
to stream address 1, and the ge operation of the first component
is invoked.

Level 3: oneol$gei extracts the next token, and determines that it
is a header token with tag value 1. Storage for a oneof is
allocated. The uninitialized oneor is entered in the map, bound
to stream address 2, and gel is invoked on the component.

Level 4: caboose$gei extracts the next token, and determines
that it is a header token. An empty ufo is entered in the
decoding map, bound to stream address 3, and in the
initialization map. struct$gei is then invoked to construct the
external representation.

Level 5: struct$get extracts the next token, and determines that
it is a header token. Storage for a struct having two selectors is
allocated. The uninitialized struct is entered in the map, bound
to stream address 4, and the gel operation of the first component
is invoked.

Level 6: string$gei constructs a string having the value "red"
from the token at stream address 5.

Level 5: struct$ge/ resumes, stores the value "red" in its first
component, and invokes gel on its second component.

ILevel 6: engine$get extracts the next token, and determines that
it is a back reference to stream address 0. The empty ufo
representing the engine is extracted from the map, and returned.

-71-

Level 5: after storing the ufo in its second component, struct$gei
returns.

Level 4: caboose$get resumes execution. It changes its ufo to the
uninitialized state by binding it to the external representation
returned from the lower level. This uninitialized object version
is returned.

Level 3: after storing its component ufo, oneoget returns.

Level 2: record$get resumes execution, storing the oneof in its

first component, and invoking gei on its second component.

Level 3: int$gei constructs an int having the value 9 from the
token at stream address 5.

Level 2: record$gei stores the value 9 in its second component,

and returns. Engine$get then returns.

All the values of primitive and composite type sent in the message have been

constructed. The result of the setup stage is shown schematically in Figure 25.

In the initialization stage all the ufo's created in the setup stage are initialized.

Level 1: engine$initialize invokes record$initialize.

Level 2: record$initialize invokes the initialize operation of its
first component.

Level 3: oneor$inifialize invokes the inilialize operations of its
component types. iul$inifialize returns immediately.
Caboose$inilialize is then invoked.

Level 4: cabx)se$iniiialize invokes s(rucl$ initialize.

I-Am

-72-

Fig. 25. The Results of tlie Setup Stage

+-------------------- >1 engineI

I (Ufo) I

Irecord I

I oneof I mit I
---------------------------- -----------

Icaboose I
(ufO) I

----- Istruct I

I stringI

Level 5: struct~initialize invokes iniialize on its first (color)
cornponent- string$ initialize returns immediately.
Engine~inifialize is then invoked.

Level 6: when engi ne~iniuialize invokes iinap$is-initialized, it
returns true, so enginceinitialize returns.

Level 5: st ruc $ gel returns.

Level 4: cahoose~inifialize resumnes execution and invokes
irnapelernentstcaboosel, which yields the ufo created at level 4
during the setup stage. The tio is ftiind to he uininitialized, so
the external representation is extracted, and cahoose~decode is
applied to it.

-73 -

Level 5: caboose$decode invokes engine$geLserial.

Level 6: the careful prologue of engine$get-serial determines

that the engine argument refers to a ufo. The state of the ufo is
tested and found to be uninitialized. Engine$decode is invoked
to initialize the engine. (This is an example of lazy decoding.)

Level 7: engine$decode returns without invoking any operations
of abstract type.

Level 6: engine$getserial returns the integer 9.

Level 5: caboose$decode resumes, returning a caboose.

Level 4: caboose$initialize returns, having initialized all
uninitialized cabooses.

Level 3: oneof~initialize returns.

Level 2: record$iniiialize resumes execution. It invokes
int$iniialize on its second (serial) component, which returns
immediately. record$iniialize returns.

Level 1: engine$inifialize resumes execution and invokes
imap$elements[engine], which yields the ufo created at level 1
during the setup stage. The ufo is found to have been initialized
(at level 6 above), so engine$iniialize returns.

After engine$iniialize returns, cleanup traverses the object and removes the initialized

ufo's from the representation. The result of receiving the message is to construct a

linked engine and caboose, having the same values as the originals. The result is shown

schematically in Figure 26.

J. - J9

174
I Fig. 26. Tlie Results of tile Initialization Stage

I +-------------

-- - - - -- - - - >1 engine I
I I (record)
I +-------------

I ------------ -----------

I Itrain serial
I I(oneof) I (int)

+------------ +-----------

+------------

+-- caboose

I(struct)
+------------

+------------ +------------I I cache Icolor
(int) II(string)II +------------- ------------

-75-

Refinements and Optimizations

This chapter describes refinements to the implementation design presented in the

previous chapter. We identify a number of common situations that do not require the

full generality of the mechanisms we have introduced. For each situation, we explain

how to recognize it when it occurs, and how to take advantage of it.

4.1 Overview

To help describe these refinements, we divide value transmission into two parts:

value translation and message construction. Value translation is the task of translating

between values of abstract type and values of built-in type. To transmit an abstract

value, it is necessary to encode it into values of built-in type, since the lowest-level

language implementation can only transmit built-in values. When sending a message,

abstract values are reduced to built-in values through successive application of encode

operations. When receiving a message, abstract values are constructed from built-in

values through successive application of decode operations. In this chapter we address

how to optimize the translation task.

The second task comprises the construction and transmission of messages

containing values of built-in type. The mechanisms described in the previous chapter

are designed to transmit values in a way that assumes as little as possible about the

implementations of built-in types used at the communicating guardians. In an actual

implementation, we may expect that some common patterns of communication will not

require the full generality of the mechanisms we have described. In particular, when

the sender and receiver reside on the same machine we may take advantage of the fact

that both sides of the exchange may share memory, and may use the same

IL'MAW

-76 -

implementations of built-in types.

Two preliminary definitions are in order: a module is the unit of compilation, and

binding is the process of combining separately compiled modules to form a program.

4.2 Translating Between Abstract and Built-in Values

The greatest apparent threat to efficiency in the translation task is the lazy

decoding mechanism introduced in the previous chapter. We recall that lazy decoding

requires that each operation of abstract type execute a careful prologue to test whether

certain arguments are uninitialized. Although we can make testing itself quite efficient,

we would like to reduce its frequency.

There are two complementary approaches to reducing the expense associated

with lazy decoding. The first approach is to distinguish between those operation

invocations that may encounter uninitialized object versions, and those that cannot.

Uninitialized object versions can exist only while a message is being decoded. If we

make the plausible assumption that most invocations of cluster operations occur while

a receive is not in progress, then it becomes attractive to distinguish between

invocations that may need to perform careful prologues, and those that do not. We

present a scheme that restricts the execution of careful prologues to invocations of

cluster operations that occur in the course of message decoding.

A second approach is to identify data types whose implementations do not need

lazy decoding. For example, we recall that lazy decoding was introduced to permit the

use of self-referential external representations to transmit values of cyclic objects.

Realistically, we expect that only a minority of types include cyclic objects, suggesting

that methods for statically recognizing types that only include acyclic objects may be

Ii,'

-ll I &d.I~ .1- . ' I

-77-

profitable. We present two schemes for recognizing that a given cluster does not

require lazy decoding.

4.2.1 Restricting the Use of Careful Prologues

In this section, we discuss how to structure cluster operations to execute careful

prologues only while a receive is in progress. We recall that uninitialized object

versions are implemented by addire, a level of indirection to object references. This

level of indirection goes through an object we have called a ufo. When an operation of

type T is invoked, it must check whether any of its T arguments is referred to

indirectly, and if so, it must extract a direct reference from the intermediate ufo. We

can increase the overall efficiency of abstract operations by ensuring that indirect

references can exist only while a receive is in progress, and by executing careful

prologues on'y at that time.

We divide modules into two classes: careful modules, which arc prepared to

encounter ufo's in object representations, and normal modules, which are not. Only

careful modules are allowed to execute when decoding a value. After the Value is fully

decoded, all indirect references through ufo's are replaced by direct references. By

having the binder create two versions of those modules that can be invoked both when

a receive is in progress, and when one is not, we may avoid the expense of executing

unneeded careful prologues, at the expense of the storage required for the extra

module version.

The cleanup operation, previously introduced as an optimization, is necessary to

ensure the safety of this scheme. Since normal modules do not expect to encounter

indirect references, all ufo's must be removed from the constructed object before any

-78-

normal modules resume execution.

The compiler only needs to produce one version of the object code for a module;

differentiation of normal and careful versions may be done by the binder. We assume

that the binder is aware of the interface specifications of cluster operations through the

Library. In particular, the binder can determine which arguments to each T operation

are T objects. If, b binding time, it has been decided that lazy decoding is necessary

for a given T cluster, the binder can "enclose" the careful versions of cluster operations

with dummy1111 procedures that test and conditionall\ initialize T argulnents before

invoking the actual operation.

When joining modules, the binder follows these rules:

Careful modules are bound to careful modules, and normal
modules are bound to normal moduics.

All decode operations are careful.

When the same procedure is invoked from both careful and normal modules, the

binder makes two copies of the procedure, placing a careful prologue in the careful

version, if required.

In summary, we have shown how to limit the run-time penalty for lazy decoding

to invocations that occur while a value is being decoded, at the cost of using more

storage. This scheme requires only simple changes to the binder, which must

distinguish between careful and normal modules.

-79-

4.2.2 Information About Abstractions and Implementations

In the remainder of this section, we discuss ways to detect that the objects

managed by a given cluster can be decoded without creating tuninitialized object

versions. Our basic strategy is to collect information both about data abstractions and

* the modules implementing those abstractions, in order to establish that sufficient

* conditions exist to eliminate laz decoding. We remove the need for careful prologues

in cluster operations by substituting different put, get, and inilialize operations from

those described in the previous chapter.

"l'here are two kinds of information that will prose useful. Specificaion

information about a module concerns the abstraction it implements. Specification

in formation includes such items as the names and argument types of procedures, and

the external representation used by a data type. Initientaition information concerns

the wa. that a module inplcments an abstraction. Implementation information

includes details sutch as a cluster's concrete representation, or the source code for a

procedure.

We may also classify inolrmation by the waxs it can be acquired. Compile-time

information about a module is information that can be collected during or after the

compila;ion of the module. Stich information call be dered from implementation

infonration about the particular module being compiled, along with specification

information about the modules it uses. Binding-tinw information concerns

implmcentation in formation about more than one module. Such information cannot

be acquired until it is kno" n which uniplementations are being bound together.

Information about modules and abstractions is managed by the Library. The

, . "I . .

-80-

CLU Library [Liskov 79] contains the inierface specificaflons of abstractions needed to

type-check inter-module references. The Library for a CLU extension incorporating

the communication primitives developed here would contain the external

representations of transmissible data abstractions, since the external representation is

the interface between distinct clusters implementing the same abstraction. The Library

also maintains information about individual implementations. We assume that both

the compiler and the binder can access and update information in the Library.

4.2.3 Eliminating Abstract Value I leaders

In this section we show how to lower the number of tokens transmitted, at the

cost of slightly complicating the control structure of the gel operations. In itself, this

reduction is not very important; however it permits us to optimize the case, discussed

below, where the encode and decode operations of a type perform no actual work.

In the implementation presented in the previous chapter, the start of an encode,

abstract value within a message stream is marked by a header token. In fact, the

information conveyed by this kind of header token is redundant, since the type of a

message is known in advance from the type of the port.

The optimized get opel :on acts in the following way. Let T be an abstract type

having external representation type XT. When T$pui encounters an object that has not

previously been encoded, it invokes XTSput without placing a header token in the

stream.

At the receiving guardian, care must be taken when a back reference token is

Ilk i ntered, since an encoded abstract value now starts at the same stream address as

,)()ded \ alue of its external representation, and it is necessary to determine which

-81-

value is indicated. Accordingly, when T$gei is invoked, it examines the next token in

the stream without removing it. If the token is not a back reference, XT$gei is invoked.

If it is a back reference, the decoding map is checked to ascertain whether a T object
has been entered with the given stream address. If such an object is found, the token is

removed from the stream, and the object is extracted from the map and returned. If no

associated T object is found, then one must be constructed, so T$gei invokes XT$get,

leaving the back reference token in the stream. T$gei is shown in Figure 27.

To illustrate how this scheme differs from the previous one, let us compare how
i

the two schemes would transmit a given value. Let A be an object of abstract type T,

having the same object R as concrete and external representation. For the purposes of

this example, let R be an array[inl] with a single element. We suppose that A has an

"exposed representation", that is, its concrete representation may be accessed and

manipulated by programs other than T cluster operations. Let us transmit the value of)a struct containing both A and R.

The tokens produced by the unoptimized scheme appear in Figure 28. At the

sending guardian, struct$pui Outputs a header token at stream address 0, and invokes

array[int]$pui, which outputs tile tokens at stream addresses 1 and 2. Struct$put then

invokes Tpul. T$put does not find A in the map, so it outputs a header token at

stream address 3, and invokes array[in1J$pui. Arraylint]$pu finds R in the map, and

inserts a back reference to stream address 1 at stream address 4. At the receiving

guardian, array[inqJ$gci constructs an object R' from the encoded value of R, and places

R' in the decoding map. T$get extracts the next token from stream address 3, discovers

it is a header token, and invokes array[int]$get. Array[int]$get discovers that the next

token is a back reference, and returns R' from the map.

IL ACi

-82 -

Fig. 27. Thle Get Operation Without Abstract I eader Tokens

get =proc(cxt: dcontext, time: timeout)
returns(T)
slgnals(timeout)

% Peek at first token.
tok: token := dstream$peek(cxt.stream)

resignal timeout
if token$is-back-ref(tok) then

addr: strearn-addr := token$value.back-ref(tok)
if dmap$seen[T](cxt.dmap, addr) then

% Object is old, remove token and look it up.
dstreanextract(cxt.dstream)
return(dmap$lookup[T](cxt.dmap, addr))
end % if

end % if

% Object is new. create uninitialized version.
u: ufo :~ufo~make-empty(nil)
ans: T ufo-mask[T](u)

% Enter the object in the initialization map.

imap$enter[TJ(cxt.imap, ans)

7~Enter the object in the decoding map.
addr: stream-addr := dstream~current(cxt.stream)

dmap$enter[I](cxt.dmap. addr, ans)

Construct the external representation.
y: xrep := xrep$get(cxt. time)

resignal timeout

ufo$change..uninitialized(u, ,y)

return(ans)

end get

The tokens produced by the optinmized scheme appear in Figure 29. At the

senlding guardian, the only difference between the two schemles is thlat instead of

placing a lcader token in the streani, T~put ininlediately inv~okes array[infj$put. At the

receiving guardian, wheni T$gci peeks at the token at stream address 3, it discovers the

token is a back ref'erence to steami address 1. When]'$gct looks ip the stream address

4W*

-83-

Fig. 28. Tokens Produced With Abstract Ileaders

Stream Address Token Type Token Information

0 header struct with two selectors
1 header array with one element
2 data int value
3 header abstract T value4 back reference stream address 1

in the decoding map, it does not find an associated T object, so it invokes

array[int]$get. The latter proceeds as before.

4.2.4 Assumptions

To eliminate the need for careful prologuKs in the operations of an abstract type

T, T objects must be decoded before they are referred to by other objects. This implies

that values are decoded in an order such that all values used by T$decode are available

when it is invoked. In the previous chapter, lazy decoding ensured this property by

determining a legal order at run-time. For most types, a legal order can be determined

statically, eliminating the need for lazy decoding and for careful prologues.

Fig. 29. Tokens Produced Without Abstract I leaders

Stream Address Token Type Token Information

0 header struct with two selectors
I header array with one element
2 data int value
3 back reference stream address 1

Mli

-84-

We divide implementations of data abstractions into two classes: well-behaved

clusters are those whose objects may be completely decoded before being referred to;

the unpredictable clusters are those for which run-time lazy decoding is required. The

implementation described in the previous chapter protects objects of built-in type from

premature access by decoding them before objects of abstract type. Similarly, the

implementation developed in this chapter decodes values in two passes: values of

built-in type and well-behaved abstract type are both decoded in the first pass, and

values of unpredictable abstract type are decoded in the second pass.

42.5 Trivial Encode and Decode Operations

Clusters whose encode and decode operations perform type conversions on their

arguments, but no other operations, form the simplest class of well-behaved clusters.

We call such operations trivial encode's and decode's. When a type T has trivial encode

and decode operations, the task of translating a T value into built-in values is

simplified. If all the encode or decode operations invoked in the course of encoding or

decoding a '1 value are trivial, then the translation task for T values is itself trivial, as it

suffices to transmit the underlying representation of a T object as a built-in object

If T is a type having trivial encode and decode operations, then there is no need to

use lazy decoding for T values; furthermore, there is no need for the put and gel

operations to check for sharing. Normally, when put cncotnters a T object whose

value has already been encoded in the current message context, it inserts a back

reference token indicating the stream address where the encoded T value starts.

Suppose 'r has a trivial encode, and that TSpui invokes xrcp$pu without checking the

encoding map. If xrep$pui discovers that the xrep value has already been encoded, it

inserts a back reference to the start of that encoded value. Since we have eliminated

-85- 1.

abstract header tokens, the stream address of the encoded xrep value is the same as the

stream address of the encoded T value, so it suffices to have the lower level put place

the token in the stream.

An analogous argument suffices to show that TSget does not need to check for

sharing, since any sharing that exists will be detected at a lower level. Furthermore,

there is no need to create an uninitialized version of the T object, since the uninitialized

version of its external representation will do as well. Finally, since no uninitialized

versions of T objects are created, T$initialize does not need to iterate through the

initialization map. In summary, the put, get, and initialize operations for T can be

reduced to simple invocations of the put, get and initialize operations of Ts external

representation.

The compiler can easily detect trivial encode and decode operations. As a further

optimization, the binder could replace the invocations of the trivial TSput, T$get, and

T$initialize operations by direct invocations of the xrep$pui, xrep$get, and

xrep$initialize operations, eliminating levels of procedure linkage.

4.2.6 The External Type Closure

A second way to eliminate the need for lazy decoding is to recognize types that

cannot have self-referential external representations. In this section we describe a

fairly simple way to recognize statically that no objects of a type will require lazy

decoding or uninitialized versions.

Let T and S be types. We define the ET(external type) relation among types in

the following way:

14"a&M-

-86-

If T is a primitive type, then there is no type S such that (r,

S) EET.

If T is a composite type, then (r, S) E ET if and only if' S is a
component type of T.

If T is an abstract type, then (1T, S) E ET if and only if S is TUs
external representation type

We use E7TMT to denote the set of types S such that (r, S) E ET For example,

E71string) = 0I E71oneoflitem: T, emipty: ntull)) = IT, null.

If setfll is a parameterized, abstract type having as external representation type

sequetice[T], then:

E7tsetjintJ) = Isequence[intil.

The ETC (exicrual type closure) relation among types is defined to be the

transitive closure of ET. Intuitively, ETC(T) is the set of types whose values will be

included in a message containing a T value. The external type closure is similar to the

concept of type closure found in [Atkinson 761.

ETC~string) = 0
ETC~oneoljitcm-: TU, empty: null]) = IT, null) u ETCMU
ETC(set[intj) = Isequence[iiit], Intl.

Before discussing the use of the external type closure, let us introduce some

convenient terminology. For an abstract type T, we state that T is recursiv'cly defIned if

it belongs to its own external type closure. For example, we recall the intilist type

introduced in Chapter Two, whose external representation is defined by:

xrep =record[car: nt, cdr: link]

-'. jim

-87-

link = oneof [next: int..list, empty: null].

It is easy to verify that:

ETC(inLlist) = {int, intlist, link, null, xrep},

where xrep and link are abbreviations for the record and oneof types. Since int-list is a

member of its own external type closure, it is recursively defined.

We say that a procedure P directly calls procedure Q if the text of P contains an

invocation of Q. We say that P calls Q if Q is in the transitive closure of P's "directly

calls" relation. 1

The basic claim we make in this section is that if a type is not recursively defined,

then it does not require lazy decoding. It is possible to optimize the task of decoding

values of such types in the following way. T$get may immediately decode a T object's

external representation, as shown in Figure 30, rather than using a ufo to create an

uninitialized object version. We will refer to this operation as the simple get.

Our argument that the simple get may be used for types that are not recursively

defined takes the following form. To show that the simple get is safe for

non-recursively defined types, we show that if the simple T$get attempts to use a value

prematurely, then T must be recursively defined. This argument is presented in three

steps:

1. The "calls" and "directly calls" relations are static: when we say that P calls Q. we
do not mean that each invocation of P will cause an invocation of Q. For example,
although the get operation for a onieof calls the get operations of all its component
types, only one component get will actually be invoked by the oneors gel.

-88-

Fig. 30. The Get Operation for a Non-Recursive Type

get = proc(cxt: dcontext)
returns(T)
slgnals(timeout)

% Peek at first token.
tok: token :=dstream$peek(cxt.stream) resignal timeout
if token~is-back-ref(tok) then

addr: stream-addr :=token$value-back-ref(tok)
if dmap$seen[T](cxt.dmap, addr) then

% Object is old, remove token and look it up.
dstream$extract(cxt.dstream)
return(dmnap$lookup[T](cxt.dmap. addr))
end % if

end % if

% Object is new, remember steam address and decode xrep.
addi': stream-addr :=dstream$current(cxt.stream)

% Construct and decode the external representation.
y: xrep :=xrep~get(cxt) resignal timeout
x: T := T$decode(y)
dmap$enter[T](cxt.dmap, addr, x)

return(x)

end get

Claim One: if T$gei invokes Itldccodc, and the latter attempts to
use the value of an S object, then S E ETC(T).

Claim Two: if T$gei invokes T~dccodce, and the latter fauils when
tr ing to Use tile vaIlue of an S object, then T E ET(S).

Claim Thre1-e: if S E IITC(T), and T C ET(S), then T E ETC([).

To establish the First claiml, we observe that for- an S object to be accessible from

I'$dccodc, S$gei Il ist have b~eenl invoked bN T$g(,/, ilrlpl ing that TF$gct calls S$gei. By

inspecting die code for the gc(oPerallolls, one can see that I '$gct directly calls S$gei if

and only if S C /17TT). It follows that T$gcl calls S$gtci if and only if S E IiTC(T).

-89-

To establish the second claim, we observe that an attempt to use the value of an

uninitialized S object can fail only while the first S$gel operation constructing it has

been invoked but has not yet completed, for only then is the ufo representing the S

object in the empty state. If T$decode can access an S object, then T$gei must have

been invoked by S$gei, thus T E ETC(S).

We may illustrate this last point by recalling the cyclic engine and caboose types

used as an example in Chapter Three. In that example, we traced in detail how an

engine-caboose pair is decoded. Let us replace the usual caboose$get operation by a

simple gel operation, and briefly retrace the steps in the example. All goes well until

the simple caboose$get invokes caboose$decode. The latter invokes engine$getserial,

which ails because the ufo representing the engine is in the emply state, since the

engine$gei operation constructing the engine object has been invoked, but has not yet

terminated.

To establish the third claim, we make use of the fact that for all types Ti and T2:

T 1 E ETC(T2) = ETC(T1) C ETC(T 2)

which follows directly from the definition of the ETC relation as a transitive closure.

Therefore:

S E ETC(T) and T E ETC(S) o T E ETC(T).

Having established that S E ETC(T) (Claim 1), and T E ETC(S) (Claim 2), we

therefore have T C ETC(T), demonstrating that ' is recursively defined.

As a final remark on the simple T$gci operation, we note that when decoding a T

&bib

-90-

object A, it is not necessary to enter an uninitialized version of A in the decoding map

before A's external representation is constructed. In the general case, an uninitialized

version is placed in the map to catch cycles of reference. However 11o such cycles can

exist when T is not recursively defined, for otherwise T$gei calls T$ge, and

T E ETC(T).

The external type closure of a type T may be computed statically. By definition,

external representations, unlike concrete representations, are the same at every

guardian. Since the external type closure of a type T is defined entirely in terms of

external representations, it is the same for all T implementations. Fulrthermore, we
may assume that external representations are changed rarely, if at all, since changing a

type's external representation requires modifying every implementation of that type in

the system. This implies that once ETC(T) is computed, it is Unlikely to change.

Since the external representation used by a type is known to the Library, it is a

simple matter to compute the external type closure once the requisite specification

information has been collected. The external type closure of an abstract type T should

be part of the specification information about T maintained by the Library.

The cluster-dependent optimizations just described may interact with the

distinction between careful and normal modules in the following way. If the compiler

recognizes that a particular cluster is well-behaved, either because it has trivial encode

and decode operations, or because it is not rcuctrsiVcl defined, then it informs the

I ibrarN of that fact. When the binder constructs a program, it e\tracts information

about each module being bound from the ILibrary. Vhe binder does not need to insert

careful prologues in the careful vcrsions of operations of well-behaved clusters.

Moreover, it is easy to detect the special case in which every module implementing a

ib

- - - , :---*I I mi*m,, 'mmm m m m m m mm m m m m

-9'-

type in E7T(T) is well-behaved, meaning that there is no need to use separate copies to

distinlgUish between norn at and care fulI versions of those modules.

4.2.7 The Funcetioni or the Binder

The put and gel operations of an abstract type T canl be constructed by the

binder, sinice the only type-dependent aspect of put or get is the choice of external

representation type.

On)\ tile binder can determine whether anl instantiation of an abstract type

parameterized bN type is recursively defined, since the parameterized types external

type closure cannot be determined without1 kn~o\\ ledge Of 11he instantiated parameter

type. For emlple, the se(I11 abstraction described above has thle lblloxm ing external

type closure:

E7'U(set[I') = sequeiice[TJ. T} U LTC(T).

T'hus, setfl] is recursikel\ defined lIr all and onlb those types T such th't sethl] is a

member of ETC I'). For each instantiation, the bider can decide which put anid get to

use, and %% hcthcr careful prologues arc required. I i1ke any other ty pe, a parameterized

type havinig triv ial encode and decode operations does not requlire lai) decoding.

When binding (lhe careftul versin of a T cluster, the binder decides %khether to

place carefrul prologuecs ill thle cluster opelritions, and Mlhich of the three kinds of get

operations to uise for T. flie binder first checks whether T' has trivial encode, and

d~code, operationls. If so, inm ocations of' Tlgei niam be r-eplaced b\ invocations of the

gel operation of F's e\ ternal representation. If thle encodec and decode, operations ire

non-trivial, the binder then checks M hether 'r is rccursikely defined, using type

-92-

information in tile library, and information about instantiated type parameters. IfT is

not recursively defined, it can be given the simple ge operation that directly invokes

T$dccode on the external representation. If either optimization applies, the careful

versions of the T cluster operations are bound without careful prologues. If the T

cluster has a non-trivial decode, and if T is recursively defined, then the general get

operation must be used, and the binder must place careful prologues in the operations

of the T cluster.

'Fo make these decisions, the binder requires two kinds of information from the

Library. To determine whether an abstract T is rccursiveIN defined, the library must

maintain T's external representation type, and T's external type closure. The Library

must also keep track of which T clusters have trivial enlco(ie and decode operations.

4.2.8 Optimiring The Initialization Stage

The initialization stage is another part of the translation task that can be

optimized. One refinement suggests itself immediately: if the initialization map is

empty at the end of the sctup stage, there is no need to initialize object versions, or to

remove ufo's. It is only necessary to incur the expense of initialization and clean-up

when uninitialized versions have actually been created.

We can also determine at binding-tirne that objects of a given type cannot

contain ufo's, requiring no initialization stage or cleanup traversal. If every type in a

type Ts external type closure is imlemcnented by a \\ell-bchavcd cluster, then there will

be no ufo's to initialize or remove. If/;."/C(T) contains no recursively defined types, the

condition can be csta lishcd statically from specification information in the Library. If

ETC(T) does contain recursivcly delined types, then when particular implementations

" """ " " :" " * : : ' ' " : 'i~(~ I- " .ill=-]•Il n l lll l

- 93-

of those types are chosen at binding-time, the binder can check whether those types

have trivial decode operations. If we can determine, either statically or at binding-time,

that objects of type T cannot contain ufo's, then T$iniiialize can be replaced by a

dummy procedure that simply returns.

4.3 Constructing and Transmitting Messages

In the previous section, we discussed ways to optimize the translation between

abstract and built-in valleS that takes place both before and after the actual message

transmission. In this section we discuss ways to optimize the construction and

transmission of messages containing the built-in values. We are primaril interested in

reducing the amount of storage required to send and receive messages.

When transmitting a very large message, we may reduce the amount of storage

needed for buffering by transmitting information before the message is completely

constructed. In the scheme described in the previous chapter, the tokens placed in an

encoding stream comprise the transmitted message. Tokens are placed in the encoding

stream as the object referred to by the send statement is traversed. The encoding

stream abstraction has the property that a token can be transmitted any time after it has

been inserted in the stream. The encoding stream cluster could be implemented to

transmit the tokens as soon m a certain number have accumulated, perhaps

asynchronotisly. Encoding streams allow storage iise to be economized by interleaving

kalue translation and message transmission. A disadx antage of this interleaving is that

the rLceiver has no wa to determine the size of a message before it is completely

received.

In the special case where the communicating guardians reside on the same

- i'

AD-A086 984 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/S 9/9
TRANSMITTING ABSTRACT VALUES IN MESSAGES. CU)
MAY 80 M P HERLIHY N00014-75-C-JAAI

UNCLASSIFIED MIT/LCS/TR234 NL

111.6 MWE2

111L4 0. 111L.I_

111112 11'111=L6

MCROCOPY RESOLUTI(TEST CHART
NO 0 ,NAI PURFIr Ofi S ONVAPDOI 0.1 A

-94-

machine, use the same language implementation, and where the implementation

permits shared memory, message transmission can be accomplished quite easily. As we

have stated before, the messages that are actually constructed and transmitted by the

langlage implementation contain only values of built-in type. In the genera! case, a

guardian wishing to transmit an integer value would encode that value into an integer

data token. The receiver would then construct a new integer object from the received

token. In the local case, the sender can just copy the integer directly into the receiver's

address space, since both use the same representation for integers. Similarly, a

guardian wishing to transmit the valUe of an array[int] could just copy the array into

the receiver's address space. This scheme benefits both guardians: the sender may

economize storage use, since it is not necessary to construct a message stream, and the

receiver may economize processing, since it begins with a fully constructed

representation object, instead of a stream of tokens that must be deciphered.

Now suppose the sender wishes to send a set[int], where set[TJ is a parameterized

i abstract type having sequence[T] as its external representation. The sender can apply

encode to the set[in|], deriving a sequence[int]. The sequence can now be copied

directly into the receiver's address space, where decode can be applied to construct a

I set[int] object.

Finally, suppose the sender wishes to send a set[set[intJ]. The first application of

encode returns a sequence[set[inti]. The next step is to create a new sequence by

replacing each element with its external representation, deriving a

sequence[sequence[inlI. Since this is an object of built-in type, it can be copied into

the receiver's address space. By successive applications of decode operations, a copy of

the original object is then reconstructed by the receiver.

-95-

These examples suggest how local message transmission can be optimized. The

value of an object of built-in type is transmitted simply by copying that object into the

receiver's address space. If the object is not of built-in type, it is reduced to built-in

type by successively replacing abstract objects by their external representations, until

no abstract objects remain. The resulting built-in object is then copied. The decoding

process is the reverse of the encoding process; external representations are replaced by

the abstract objects they represent. The remainder of this section describes the

construction and interpretation of message objects in more detail.

We define the message representation type of a type T, denoted by MR(T), in the

following way. 1

If T is primitive, MR(T) = T.

If T is composite, then each component type is replaced by its
message representation type, e.g. MR(array[S]) = array[MR(S)].

If T is abstract, having external representation type XT, MR(T)
SM R(XT).

We introduce locaLput and local-get operations to construct message representations

for objects. Since most of the structure of local-put and local-get operations is

identical to the corresponding put and get operations, we will not describe them in

Sgreat detail.

The local-put and local-get operations have the following interface

specifications:

1. The message representation of a recursively defined type is a directly recursive
type, which is not an expressible type in CLU.

-96-

local-put: proctype(T, map) returns(any)
local-get: proctype(any., map) returns(T)

For a type T, T$1ocal-put accepts a T object as an argument, and returns an object of

type MR(T), encoding the value or that argument. T$Iocal-get accepts an object of

type MR(T) as an argument, and returns a T object constructed from that argument.

All local-put and local-get operations check for sharing in the usual way. Map

types similar to those used in the general scheme serve to detect sharing. Where the

maps in the general scheme use stream addresses to refer to the encoded values of

objects, the maps in the local scheme use standard object references.

The local-put and local-get operations for primitive types simply copy their

arguments into the receiver's address space. The local, put operation for array[TI

constructs an array[MR(T)i in the receiver's address space, where the latter object is

constructed by replacing each array[TJ element with the result of its localput

operation. The local-get operation constructs a new array[TJ by replacing each

element in the received array[MR(T)] with the results of its local-get operation. The

lcal-put and local-get operations of the other composite types behave analogously.

The local-put for an abstract type returns the result of applying xrep$1ocal-put to

the argument's external representation. The local-get operation invokes xrep$Iocal.gei

on its message argumenL

.: If every type in the external type closure of a type T has a trivial decode, then the

underlying representation of the T object is the MR(T) object, and there is no need to

perform any translation.

*1,

-97-

Conclusions

In this chapter we evaluate our results, suggest some extensions, and list some

areas for future research.

5.1 Summary and Evaluation

The scheme developed in this thesis is motivated by the claim that value

transmission for programmer-defined types should be tinder the control of the

programmer. As evidence for this claim, the introduction describes a number of

situations in which the representations of values used within a guardian are

inappropriate for communicating those values between guardians.

We propose the external representation scheme as a means for defining

transmission. To evaluate the merits of this scheme, let us review the goals set forth in

Chapter Two, and examine how we have met them.

Our first goal was to permit communicating guardians to use different

implementations for a common data type, without causing a combinatorial growth in

- - complexity as new implementations are developed. The external representation

scheme accomplishes this goal by serving as an information-hiding mechanism. Since

all guardians communicate by encoding information in a common external

representation, no guardian depends on another's concrete representation, and the

introduction of a new implementation is indistinguishable from duplication of an old

-. -implementation.

The ease of implementing and using a particular data type depends to a certain

extent on the simplicity of its specification. We feel that the external representation

t- -Y-

f -98-,

scheme provides a simple way to specify the meaning of transmission for a type. The

specification for a programmer defined type T has two parts. The first step is to choose

an external representation type XT, for which transmission is defined. The second step

is to define abstract encoding and decoding operations, which translate between values

of T and values of XT. Transmission is defined for T by the triple composition of the

encoding operation, the previously defined transmission operation for XT, and the

decoding operation.

Since the correctness of a type's implementation depends on correctly

implementing the translation operations, the programs that perform the translation

should be easy to locate and verify. The programmer implementing a transmissible

type must provide encode and decode operations to translate between concrete and

external representations. The input-output behavior of the encode and decode

operations completely characterizes the translation process. To verify that transmission

is implemented correctly, it suffices to verify the encode and decode operations.

The responsibility for message construction and interpretation is given to the

language implementation, facilitating the task of the programmer.

Although the scheme can be used without mechanisms to preserve sharing

structure and to transmit values of cyclic objects, we feel that the availability of such

mechanisms is a major strength of our scheme. Later in this chapter we will compare

our scheme to a simpler one that does not provide this kind ofsupport.

Finally, we require that our scheme be acceptably efficient. Rather than attempt

to define "acceptably efficient," let us examine the areas where effciency may be an

ssue.

• ° .r -

-99-

The first efficiency question we address concerns the expected complexity of the

user-defined translation operations. We may assume that programmers will attempt to

make the operations as efficient as possible. In particular, it seems reasonable to

suppose that many transmissible types will be implemented having identical concrete

and external representations, requiring trivial translation operations.

The sharing preservation mechanisms increase the amount of work to be done,

since objects must be entered into and retrieved from maps. On the current CLU

implementation, it is possible to compare object identity through a simple pointer

comparison, meaning that standard hashing techniques can be used to make the map

types quite efticient.

The mechanisms used to facilitate transmission of values of cyclic objects

introduce a potential source of inefficiency in the form of an extra level of indirecte.on

in certain object references. This inefficiency can be reduced through a number of

optimizations described in Chapter Four. A straightforward optimization permits us to

restrict the run-time expense of using indirect references to certain procedure

invocations, at a cost in storage. Slightly more complicated optimizations permit us to

eliminate indirect references entirely for certain types, through the maintenance of

relevant information in a library accessible both to the compiler and the binder.

Finally, there are several special cases that we expect to be common enough to

optimize speciafly. By recognizing clusters using the same concrete and external

representations, it is possible to make message construction and interpretation more

efficient. When all the translation operations used to construct a message are trivial in

this way, the expense of constructing or interpreting a message is comparable to

copying the object whose value is being transmitted. When communicating guardians

0i

-100-

reside on the same node, it is possible to reduce the work associated with message

transmission to a significant degree by taking advantage or shared memory, as we

discuss in Chapter Four.

5.2 Transmitting Untyped Objects

Our scheme may be extended to permit guardians to receive messages without

decoding the contained values. For example, a file server guardian may provide

reliable storage for information belonging to other guardians, without regard for the

content of the information. In particular, it should be possible to store and retrieve the

value of an abstract T object using sLch a server, even ir the T type is not supported at

the server's guardian. To provide this capability, we introduce an image type. An

image object may be viewed as an undecoded message containing value of

transmissible type. An image is constructed from a transmissible object using the same

value encoding mechanism used to construct messages. The value decoding

mechanism is used to reconstruct a copy of the object originally used to construct the

image. Images are immutable and transmissible, and have the following operations.

encode-value: proctype[T: type](T) returns(Image)

Encodes the value of argi into the result.

decode-value: proctype[T: type](1mage) returns(T)
si gonals(wronotype)

Returns an object constructed from argi.

i
Le _ ea beto yeT h eaino mgst rnmsinmcaim a

-101 -

be summarized as follows:

image$decode-value[T](image$encode-valueT(A)) T$iransmi(A,

message-context$createo)

Images resemble CLU any's, in that they are useful for managing objects

independently of their types. However, there are several important differences

between any's and images. First of all, "any" describes the behavior of variables, not

objects. Unlike image, any is not really an object type. Secondly, images are

transmissible, while any does not have a transmit operation. Finally, there is no sharing

between an image, and any other object. An object, an image created from it, and an

object created from the image are all disjoint. By contrast, when an object is assigned

to an any, and when that any is forced, the original object, the any, and the result of the

force are identical.

Images can serve as a convenient way to store values on secondary storage. By

making images storable, the same encoding and decoding operations can serve both for

storage and transmission. Furthermore, the representation in storage of a value is

independent of the concrete representation used by the creating guardian. A guardian

may store an image constructed from a T object in secondary storage, change the

concrete representation used by its T cluster, and still be able to retrieve the stored

value (as long as Ts external representation remains unchanged).

The most convenient way to encrypt values kept in secondary storage may be to

provide the image type with encrypting operations, rather than providing each storable

type with its own encrypting operation.

Images also provide a way to copy transmissible objects. An object may be

4W__

- 102 "

copied by encoding its value in an image, and then decoding the image. The result will

be a completely disjoint object, having the same value as the original.

5.3 Implications of Own Data

The principal result of extending the communication primitives to a language

including own data is to make the optimizations described in the previous chapter more

difficult.

By distinguishing between modules that may encounter objects represented by

ufo's, and those that may not, we were able to restrict the execution of careful

prologues. This optimization depends on our ability to guarantee that two conditions

hold:

No indirect references to objects exist while normal modules are

executing (i.e. when a receive is not in progress).

Only careful modules can execute while a receive is in progress.

Since normal and careful modules share own variables, unrestricted use of own

variables may subvert the dichotomy between the two kinds of module versions. For

example, the careful version of a module may store a reference to a ufo in an own

variable, which may later be operated upon by the normal version, violating the first

condition. Another kind of problem arises when a normal module stores a procedure

in an own procedure variable. The careful version of the module may violate the

second condition by invoking that procedure, supplying an indirect reference as an

argument.

We can avoid these problems by brute-force methods, perhaps by traversing own

.: ,. , ., it _-'

- 103 -

variables at the end of a receive, or by requiring that procedure variables always refer

to careful versions of procedures. More refined methods undoubtedly exist, but their

pursuit is best left to individual implementations.

5.4 Operation Extension by Overloading

Value transmission for an object is performed by the transmil operation of its

type. The method used to provide an abstract type with a transmit operation differs

significantly from the way abstract operations are usually provided in CLU. In this

section we examine the reasons for this difference. In the following aection, we suggest

ways in which the method used to implement transmit may be generalized into a

methodology for implementing other operations of abstract type.

Certain operations, such as identical, copy, and transmit, are useful to a wide

variety of types. The language provides these operations for a collection of built-in

types, and it is frequently useful to provide them for abstract types. We will identify

three approaches to providing such operations. The first approach, which we call the

automatic approach, is to have the language implementation provide the operation for

the abstract type, usually in terms of the operations of the concrete representation type.

The identical operation was defined in this way. In general, this approach is

unsatisfactory, since the exact meaning of a type's operations (e.g., copy) depend on the

abstraction, not on the type's implementation.

The second approach, which we shall call the overloading approach, is the one

currently used in CLU. The language provides the built-in types with a collection of

standard operations; the cluster implementing an abstract type may include procedures

to implement the corresponding operations. The language requires that these

b.

-104-

operations have standard interface specifications; for example, T$copy should have the

form:

copy: proctype(T) returns(T)

CLU suggests guidelines for appropriately defining T$copy, although the language

does not attempt to impose further restrictions either on the meaning or on the

implementation of the operation.

In Chapter One, we observed that an abstract type's iransmit operation cannot be

provided automatically. One of the main conclusions of this thesis is that it is equally

undesirable to provide abstract iransmil operations by overloading. We claim that if

users are given complete freedom to implement transmit, then the problems of sharing

preservation and representation standardization remain unsolved, in any practical

sense.

Let us briefly examine the problems that arise in an alternate scheme using

overloading to provide abstract fransmil operations. The image stream scheme used in

the CLU reference manual to store values on secondary storage is used to construct

messages. Image streams behave like the message streams used earlier in this thesis.

All of the built-in types are given encoding operations to insert a value into an image

stream, and decoding operations to extract a value from an image stream.

Implementors of abstract types are expected to provide their types with encoding and

decoding operations, constructed from the encoding and decoding operations of

subsidiary types.

The first problem with the overloading scheme is that it is much more difficult to

verify that information is being transmitted in the correct formal In any scheme,

.

k ,,•. .

L4

- . - - , . .- = -,7 = • * o -= - - __ M V 4 - r -:: c , . I ~-= = --

- 105 -

communicating implementions of the same type must agree on an intermediate

representation for values of the type. Using image streams, the compiler cannot check

whether an encoding operation that may invoke a number of subsidiary encoding

operations produces a correctly typed intermediate representation. On the other hand,

the transmil operation permits static verification that the correct external

representation type is used by a cluster, simply by type-checking the encode and decode

operations. Of course, neither scheme can completely eliminate the possibility of

error, however, the Iransmil scheme offers greater protection.

The second problem with the overloading scheme is the difficulty of preserving

sharing. The encoding and decoding operations of the objects being sent must collect

sharing information and encode it explicitly into the stream. One might think that the

task could be facilitated by providing the programmer with access to encoding and

decoding maps. In fact, we have considered many such schemes. Unfortunately, we

have been unable to develop a scheme that did not seem excessively complicated and

awkward.

Transmit is only one of a class of operations that are difficult to extend using

overloading. We suggest copy as an example of another such operation. In CLU, the

copy operation is intended to have the following effect:

the copy operation should provide a "copy" of its input object,
such that subsequent changes made to either the old or the new
object do not affect the other. [Liskov 79, p.801

Let us examine an abstract type whose copy operation does not readily lend itself to

extension by operator overloading.

Consider a file system organized as a directed graph, where non-terminal nodes

K -J

-106-

are directories, and terminal nodes are files. A file is named by specifying a path from

a distinguished rool directory to the desired terminal node. Files and directories may

be shared, since a given node may be accessible through one or more paths.

Consider the problem of defining and implementing a directory$copy operation

that is to be used to create backup versions of directories. Given a directory, we wish

to make a copy of the directed graph rooted at that directory. We use A' to denote the

results of copying a graph node A. We wish copy to preserve the sharing structure of

this subgraph: i.e., if A, B, and C are nodes in the subgraph, and if B and C share a

node A, then B' and C' should share A'.

These specifications cannot be implemented in a satisfactory manner using

operator overloading. The problem is essentially that the user is given no way to detect

non-local sharing structures. The directory$copy operation could conceivably be able

to detect when a single directory has two links to the same file, but there is no

straightforward way to detect that two distinct directories share a file. Furthermore, it

is diicult to prevent the copy operation from recursing forever when it is applied to a

subgraph containing cycles.

5.5 Operation Extension by Template

* . The third approach to operator extension, which we call the template approach, was

used to provide abstract transmit operations. Using this approach, an operation

provided for built-in types may be extended to abstract types, but the language

imposes a rigid structure on the form of the operation's implementation.

: ;_For an abstract type T, we can informally describe the T$Iransinit operation in

terms of the following five steps:

S.

-107 -

Step 1: Check for sharing.
Step 2: Encode the T value into its external representation.
Step 3: Transmit the external representation.
Step 4: Check for sharing.
Step 5: Decode the external representation into a T object.

Steps One and Two are performed at the sending guardian, while steps Four and Five

are performed at the receiving guardian. The language controls the form of iransmit,

while the user controls its meaning through the provision of the encode and decode

operations used in steps Two and Five.

In the remainder of this section, we will examine how this approach can be

generalized to extend an arbitrary operation, and we will review a number of

operations whose implementations are better effected by using templates than by using

overloading.

We assume that some collection of built-in types and type constructors is

provided with an op operation. For each such type S, S$op has the following interface

specification:

op: proctype(AT l . AT.) returns(RTI,.... RTm) signals(). . .

where each argument type and each result type (both normal and exceptional) is either

a built-in type, or S. We use I to denote the set of indices i such that AT i = S, and J to

denote the set of indicesj such that RT. = S.

To extend the op operation to an abstract type T, the T cluster must provide

translation operations, denoted here by T$op.encode and T$op-decode. The op.encode

operation encodes the value of an argument of type T into a value of a special

representation type ST, where ST has an op operation. The opdecode operation

-108-

accepts an argument of type ST, and returns a result of type T.

op.encode: proctype(T) returns(ST)
stgnals(encodeerror(string))

op-decode: proctype(ST) returns(T)
signals(decodeerror(string))

T$op is defined in terms of ST$op in the following way. An invocation such as

Yl.....Ym := TSop(xl,... ,Xn)

causes the invocation of:

YI' ... Ym':=ST$°P(Xl' Xn')

where the values of the arguments to ST$op are defined by:

x= T$op-encode(x1) for i E I.
xi -x i otherwise.

The translation between the arguments to T$op and the arguments to ST$op is also

sensitive to sharing, in the following way. All invocations of op take place with respect

to a given contexi, where a context is analogous to the message context defined in

Chapter Two. The scope of a context is defined as follows. When T$op is invoked

directly from a user program, a new context is created. When an invocation of T$op

causes the invocation of ST$op, the latter occurs with respect to the same context as the

former. For all invocations of T$op occurring with respect to the same context, the

following condition holds: if two arguments to T$op share a T object A, then the

corresponding arguments to ST$op will share a ST object A', where A' is constructed

from A by a single application of T$op-encode.

If ST$op returns normally, then T$op returns normally, and the values of its

results are defined by:

A*&

4-OL

.109-

yj = T$op.decode(y.') for j C J.
yj = y,' otherwise.

Sharing among the results is preserved in the same way as sharing among the

arguments: for all invocations of ST$op occurring with respect to the same context, if

two results of ST$op share a ST object 0', then the corresponding results of T$op will

share a T object 0, where 8 is constructed from 8' by a single application of

T$op.decode.

If ST$op raises an exception, then T$op raises the same exception, and any

objects returned by the exceptions are treated as results; i.e., if ST$op's exception

returns a ST object, then T$op's exception returns a T object constructed from the

corresponding ST object by an application of T$op.decode. Finally, if op.encode or

op.decode signal an exception, then T$op signals that same exception.

Templates are useful for defining operations that are sensitive to sharing

structure. Since the opencode and op-decode operations associated with such an

operation are applied by the language implementation, not by user programs, the

language implementation can do the bookkeeping required to recognize and keep track

of sharing. As we have repeatedly argued in the case of the Iramnnit operation, this

kind of bookkeeping is tedious and error-prone if performed by the user.

Template definition may be viewed as a control abstraction; the cluster writer

who defines an operation using a template definition need not be concerned with the

mechanical details of sharing preservation, but the Iact that sharing is preserved may

be quite important. The programmer is free to concentrate on the individual

translation operations, while the language implementation ensures that they are

applied correctly.

-110-

5.5.1 Revising Standard CLU Operations

The first examples we will examine are standard CLU operations. As illustrated

in a previous section, the problem of sharing preservation makes the copy operation

difficult to extend satisfactorily using overloading. By using a template structured copy

operation, the language implementation can detect sharing, while the meaning of the

operation can be controlled by user-defined copy-encode and copy-decode operations.

For some types, cop), will just copy the underlying concrete representation object.

In that case, copy-encode and copy-decode may just perform up and down conversions.

As an example of a type requiring more sophisticated translation operations, consider a

PT (protected T) object consisting of a T object protected by an associated semaphore.

When the PFT object is copied, it would make no sense to copy the state of the

semaphore, which may contain a collection of vaiting processes. The PT$copyencode

operation returns the T component without the associated semaphore, while the

copy-decode operation accepts a T object, creates a new semaphore, and then combines

them to construct a PT object.

CLU's similar operation is used to determine when two objects of the same type

have the same information content. Precisely what constitutes the interesting

"information content" of an object is quite type-dependent. For instance,

array[T]Ssimilar is defined to check whether the two arrays being compared have the

same bounds. If so, then Tsimilar is used to test pairs of corresponding elements fbr

similarity. i'all of these tests succeed, then the two arrays are deemed to be similar.

The definition of array[TJ$similar could be altered to encompass the sharing

structures of the arrays being compared. Two objects may be compared as directed

- 111-

graphs of objects, where nodes represent component objects, and edges represent

logical containment. Let us define a globally-similar operation for the built-in types to

test for similar objects having the same structure as directed graphs. Individual node

similarity is tested in the usual manner.

globally-similar: proctype(T, T) returns(boo1)

Global sharing structure is recognized by accumulating a table of corresponding

components of the objects being compared. If at any time, a component of one object

corresponds to more than one component of the other, then the objects are not

globally..similar.

We observe that since globally-similar returns no objects of T type, there is no

need for a decoding translation operation.

When comparing the values of objects of the protected T type introduced above,

let us assume we only wish to compare the values of the T components; we do not wish

to compare the states of the associated semaphores. Under this assumption, the

encoding translation operation only needs to extract and return the T component of its

PT argument

5.5.2 1/0 Operatlo4

ofWe have observed that template definition imposes a rigid structure on the form

of an operation's implementation. A benefit of this rigidity is that it becomes possible

to use template structured operations to define interfaces between autonomous

domains such as guardians. We have already seen how the structure of the transmit

operation permits a division of labor between the communicating guardians, and

- 112-

between the language implementation and the cluster writer. A large class of

operations that not only involve sharing detection, but that require a degree of

standardization among autonomous guardians, are operations to perform input or

output activities using the values of abstract objects.

The first 1/0 operations we will examine are used to store and retrieve the values

of objects on secondary storage. Let us define store and retrieve operations for the

built-in types, having the following interface specifications:

store: proc(T) return(filename)

retrieve: proc(file-name) returns(T)

Mechanically copying objects' concrete representations to secondary storage is not a

satisfactory way to implement store and retrieve. To illustrate this point, we recall the

protected T type. When storing the value of a protected T object, it makes little sense

to store the state of the associated semaphore. Similarly, overloading is not a

satisfactory way to implement store and retrieve, for two reasons. First, we would like

to control how sharing structure is preserved. Second, we would like to use static

type-checking to ensure that values of a type are stored in a standard format, since we

would like to share stored values with other guardians that might use different concrete

representations for the type.

We may extend store and retrieve to abstract types by selecting for each abstract

type T, a stable representation type ST, with appropriate translation operations. We

recall that by using a standard external representation, T values could be

communicated between different implementations of T. Similarly, the use of a

standard stable representation permits different implementations of T to store and

retrieve one another's values. This may be particularly useful when replacing one

-Itb

-113 -

version of the T cluster by another; by leaving the stable representation unchanged, the

new version can read values previously stored by old versions.

Another operation that should be sensitive to sharing structure is the display

operation to display values of objects to humans. Display requires an encoding

translation operation, but no decoding translation operation. The display operation is

particularly useful for debugging. When debugging a program that uses a data

abstraction T, the best way to display a T object's value is not necessarily to display the

value of its representation. For instance, when debugging a program that uses a

symbol table, a simple display of associated key-item pairs will be more useful than a

more complicated display of hash tables and list structures. This kind of display is

particularly appropriate for remote debugging, where an object of interest resides on a

foreign guardian using a concrete representation unknown to the debugger. On the

other hand, when debugging the symbol table cluster, the value of the representation is

ofinterest

We do not intend to explore the difficult question of how values are to be

represented to users; however, one could imagine displaying an object's value as a

directed graph on a high resolution cathode-ray screen. The built-in types and type

constructors may be given a standard display representation, which may be extended to

abstract types by selecting for each abstract type T, a display representaion type DT,

with a translation operation from T to DT. The inverse translation from DT to T might

be used to define T literals.

-114-

5.5.3 Cenchlom

Operation extension by template definition appears to have two advantages. It

serves to implement sharing-sensitive operations for abstract types in a way that is not

currently possible in CLU. Furthermore, template definition eases the standardization

problems that arise in a distributed system; although we cannot guarantee that the

information being released by transmit, store, or display is correct, we can guarantee

that it is in the correct rormat.

When defining template operations that operate on cyclic objects, one encounters

the same problems we encountered earlier with self-referential external

representations. If we make the same choice we made for transmit, we may operate on

arbitrary cyclic objects by imposing restrictions on op.decode operations. The language

implementation must then introduce uninitialized object versions in the manner

described above.

On the negative side, there may be an efficiency penalty to having the language

implementation apply translation operations and check for sharing. A programmer

having semantic information about an abstraction can detect optimizations that the

i "language implementation cannot. By expending more human effort, in is undoubtedly

possible to improve individual implementations. There is a characteristic trade-off

between the increased convenience and reliability provided by template-structured

operations, and the ability to construct optimizations on an individual basis provided

by overloaded operations.

IIS"

- 115 -

5.6 Applicability to Other Languages

Since we have presented our communication primitives as an extension to CLU,

it is natural to ask how readily our primitives can be adapted to other languages.

One aspect of CLU that is essential to our scheme is the notion of data

abstraction. One of the principal motivations is the belief that different representations

of information are appropriate for different purposes. The representation used to

transmit a value between guardians may be different from the representation used

within a particular guardian, and different representations for objects of a type may

used at different guardians. If the language contains no facilities for encapsulating

representation information, then communication among differing implementations

must be based on voluntary conventions, not on language features.

The fact that CLU is an object-oriented language, as opposed to a

variable-oriented language, is not crucial to our scheme. Although we have spent

much of our effort defining the effects of transmission on sharing structure, the same

* problems arise in languages having explicit reference types, and the same solutions are

applicable.

5.7 Directions ror Further Research

Defining value transmission is only the first of many difficult problems in the

development of communication primitives for a distributed application language. A

comprehensive survey of the outstanding research areas in this field could easily fill

another chapter; accordingly, we mention only those questions that arise directly from

Sthis research.

-a.I

Rather than limit messages to the value of a single object, it may be convenient to

introduce explicit message types. One possibility is to define a message type as

consisting of a tag followed by objects whose values are transmitted together. Port

types would consist of a list of message types. Examples of message types are:

employee(name: string. salary: int)

error(message: string)

If two objects whose values are sent in a message share a component, it must be

decided whether the objects constructed by the receiver should also share. If that

effect is desired, all the objects in a message should be encoded and decoded in the

same message context. Alternatively, if the opposite effect is desired, a distinct

message context should be used for each object.

An alternative to explicit message passing is to support inter-guardian

communication by remote procedure invocation. The value transmission mechanisms

developed here can be used to pass arguments from the invoking guardian to the

guardian where the requested action is carried out, and to return any results. This kind

of remote invocation differs from usual procedure invocation in CLU, where

. .procedures pass arguments by sharing objects between the caller and the called

j procedures. Remote argument passing resembles traditional call-by-value schemes.

We feel that value transmission is better suited to remote invocation, as node failures

and inherent unreliability in the communication medium can cause remote invocations

to fail in ways that are not possible for local invocations.

* In summary, the value transmission scheme developed here can be adapted to a

number of different communication primitives. Determining the best scheme (or

schemes) to incorporate into a language is an area that would benefit from further

W 1.1

tA

- 117-

research.

The send and receive statements used in this thesis were defined as simply as

possible. Such simple send and receive statements are probably not the best choice of

primitives. Actual language primitives would probably have to be more sophisticated,

and would certainly have to address issues that we have avoided. For example, it may

be useful to provide primitives to support patterns of communication, such as remote

procedure invocation, paired requests and responses, or forwarding of requests to other

guardians. More research is needed to determine which of these patterns, if any,

should be supported in a higher-level language.

We have made no mention or the degree of reliability provided by the send and

receive primitives. The send primitive may or may not attempt to retransmit messages

that appear to have been lost, and it may or may not cause the same message to be

received more than once. The degree of reliability built into a primitive undoubtedly

depends on its form- a remote invocation primitive would have to be fairly reliable,

while a simple send need not be. The inherent unreliability of a distributed system

may complicate the programmer's task; the degree to which the proper choice of

communication primitives may ease such problems is an important area for future

research.

We have used ports to indicate the destination of messages, and to insure type

correctness. We have not addressed how ports are acquired, or whether ports are really

the best way for guardians to name one another. The question of inter-guardian

naming depends on assumptions about the organizations of programs, and the

organizations of guardians.

.'. .

118 -

We have not given a formal semantics for value transmission. A number of

approaches to formal description of object-oriented languages exist [Berzins79,

Schaffert 78, Scheifler 78]; it would be interesting to extend these descriptions to value

transmission.

The scheme developed in this thesis permits guardians to change the concrete

representation used for a type without that change being visible outside the guardian.

We have not provided any easy way to change the external representation used by an

abstraction, as such a change requires changing implementations at all guardians

supporting the type. Changing a type's external representation is a special case of the

general problem of replacing programs in a distributed system.

Finally, we have noted that the template scheme used to implement and define

transmit can be extended in a very straightforward manner to implement and define

such operations as copy,, similar, store and retrieve, and display. It is natural to enquire

whether other operations may be defined in this way, and whether other kinds of

templates may be useful for defining other operations.

1'

;.

* " - " " - ,. Y i . , ;.

-119-

References

[Atkinson 76] R. Atkinson, "Optimization Techniques for a Structured
Programming Language," S.M thesis, Massachusetts
Institute of Technology, May 1976.

[Berzins 79] V. Berzins, "Abstract Model Specifications for Data
Abstractions," M.I.T. Laboratory for Computer Science
TR 221, July 1979.

[Crocker 75] S. D. Crocker, "The National Software Works: A New
Method for Providing Software Development Tools Using
the ARPANET," Proc. Meeting on 20 Years of Computer
Science, Pisa, Italy, July 1975.

[Fabry 76] R. S. Fabry, "How to Design a System in Which Modules
can be Changed on the Fly," Proceeding of the Second
International Conference on Software Engineering, San
Francisco CA, October 197(, pp. 470-477.

(Feldman 791 J. Feldman, "High Level Programming fbr Distributed
Computing," CACM 22, 6, June 1979, pp. 353-367.

[Friedman 761 D. P. Friedman and D. S. Wise, "CONS Should Not
Evaluate its Arguments," In S. Michaelson and R. Milnor
(eds), Automala, Languages and Programming, Edinburgh
University Press, Edinburgh 1976, pp. 257-284.

[Gligor 791 V. D. Gligor and B. G. Lindsay, "Object Migration and
Authentication," IEEE Transactions on Software

Engineering, Volume SE-5, 6, pp. 607-611.

[Haber 78] N. Habermann, "Dynamically Modifiable Distributed
Systems," Proceedings of the Distributed Sensor Net
Workshop, Carnegie-Mellon University, Pittsburgh PA,
December, 1978, pp. 111-114.

/ 1

- 120-

[Hender 76] P. Henderson and J. H. Morris, "A Lazy Evaluator,"
Proceedings of the Third ACM Symposium on Principals
of Programming Languages, 1976, pp. 95-103.

[Levine 78] P. Levine, "Facilitating Interprocess Communication in a
Heterogeneous Network Environment," M.I.T. Laboratory
for Computer Science TR 184, July 1977.

[Liskov 79] B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert, B.
Scheifler, A. Snyder, CLU Reference Manual, M.I.T.
Laboratory for Computer Science TR 225, October 1979.

[Liskov 79a] B. Liskov, "Primitives for Distributed Computing,"
Proceedings of the Seventh Symposium on Operating
Systems Principals, Pacific Grove CA, December 1979, pp.
33-43.

[Neigus 73] N. J. Neigus, File Transfer Protocol, NIC \17759, August
1973.

[Postel 74] J. Postel, "NSW Protocols Version 2," Stanford Research
Institute, 1974.

[Reed 78] D. Reed, "Naming and Synchronization in a Decentralized
Computer System," M.I.T. Laboratory for Computer
Science TR 205, September 1978.

[Schaffert 78] J. C. Schaffert, "A Formal Definition of CLU," M.I.T.
Laboratory for Computer Science TR 193, January 1978.

[Scheifler 781 R. W. Scheifler, "A Denotational Semantics of CLU,"
M.I.T. Laboratory for Computer Science TR 201, May
1978.

[Snyder 79] A. Snyder "A Machine Architecture to Support an
Object-Oriented Language," M.I.T. Laboratory for
Computer Science TR 209, March 1979.

- 121-

[Sollins 79] K. Sollins, "Copying Complex Structures In a Distributed
System," M.I.T. Laboratory for Computer Science TR 219,
May 1979.

[Svobod 79] L. Svobodova, B. Liskov, D. Clark, "Distributed Computer
Systems: Structure and Semantics" M.I.T. Laboratory for
Computer Science TR 215, March 1979.

[Telnet 73] Telnet Protocol Specification, NIC \18639, August 1973.

[White 74] J. White, "The Procedure Call Protocol Version 2,"
Stanford Research Institute, 1974.

[Wulf 76] W. A. Wulf, R. L. London, M. Shaw, "Abstraction and
Verification in Alphard: Introduction to Language and
Methodology," Carnegie-Mellon University and USC
Information Sciences Institute Tech. Reports, 1976.

.,

• I

4,.

r :

CMTICIAL DISTRIBTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 12 copies

Office of Naval Research Office of Naval Research
Information Systems Program Code 455
Code 437 Arlington, VA 22217
Arlington, VA 22217 1 copy

2 copies Dr. A. L. SLafkosky

Office of Naval Research Scientific Advisor
Branch Office/Boston Cmkaxlant of the Marine Corps
Building 114, Section D (Code 1D-1)
666 Sumner Street Washington, D. C. 20380
Boston, MA 02210 1 copy

icopy
Office of Naval Research

Office of Naval Research Code 458
Branch Office/Chicago Arlington, VA 22217
536 South Clark Street 1 copy
Chicago, 3L 60605

1 copy Naval Ocean Systems Center, Code 91
adquarters-Cmputer Sciences &

Office of Naval Research Simulation Department
Branch Office/Pasadena San Diego, CA 92152
1030 East Green Street Mr. Lloyd Z. Maudlin
Pasadena, CA 91106 1 copyI 1 copy

Mr. E. H. Gleissner
New York Area Naval Ship Research & Development Center
715 Broadway - 5th floor Computation & Math Department
New York, N. Y. 10003 Bethesda, MD 20084

1 copy 1 copy

Naval Research Laboratory Captain Grace M. Hopper, USNR
Technical Information Division NXVDAC-O0H
Code 2627 Department of the Navy
Washington, D. C. 2037S Washingon, D. C. 20374

6 copies 1copy

Assistant Chief for Technology
to office of Naval Research

Code 200
Arlington, VA 22217

copy

.9i..!.-

S

